Компьютерные уроки

Современная спутниковая связь, спутниковые системы. Современная спутниковая связь Услуги для абонентов спутниковых сетей

Идея создания на Земле глобальных систем спутниковой связи была выдвинута в 1945 г. Артуром Кларком , ставшим впоследствии знаменитым писателем-фантастом. Реализация этой идеи стала возможной только через 12 лет после того, как появились баллистические ракеты, с помощью которых 4 октября 1957 г. на орбиту был запущен первый искусственный спутник Земли (ИСЗ). Для контроля за полетом ИСЗ на нем был помещен маленький радиопередатчик - маяк, работающий в диапазоне 27 МГц . Через несколько лет 12 апреля 1961 г . впервые в мире на советском космическом корабле "Восток" Ю.А. Гагарин совершил исторический облет Земли. При этом космонавт имел регулярную связь с Землей по радио. Так началась систематическая работа по изучению и использованию космического пространства для решения различных мирных задач.

Создание космической техники сделало возможным развитие очень эффективных систем дальней радиосвязи и вещания. В США начались интенсивные работы по созданию связных спутников. Такие работы начали разворачиваться и в нашей стране. Ее огромная территория и слабое развитие связи, особенно в малонаселенных восточных районах, где создание сетей связи с помощью других технических средств (РРЛ, кабельные линии и др.) сопряжено с большими затратами, делало этот новый вид связи весьма перспективным.

У истоков создания отечественных спутниковых радиосистем стояли выдающиеся отечественные ученые и инженеры, возглавлявшие крупные научные центры: М.Ф. Решетнев, М.Р. Капланов, Н.И. Калашников, Л.Я. Кантор

Основные задачи, ставящиеся перед учеными, состояли в следующем:

Разработка спутниковых ретрансляторов телевизионного вещания и связи ("Экран", "Радуга", "Галс"), с 1969 г. спутниковые ретрансляторы разрабатывались в отдельной лаборатории, возглавляемой М.В. Бродским ;

Создание системных проектов построения спутниковой связи и вещания;

Разработка аппаратуры земных станций (ЗС) спутниковой связи: модуляторов, порогопонижающих демодуляторов ЧМ (частотной модуляции) сигналов, приемных и передающих устройств и др.;

Проведение комплексных работ по оснащению оборудованием станций спутниковой связи и вещания;

Разработка теории следящих ЧМ демодуляторов со сниженным шумовым порогом, методов многостанционного доступа, методов модуляции и помехоустойчивого кодирования;

Разработка нормативно-технической документации на каналы, тракты телевизионного и связного оборудования спутниковых систем;

Разработка систем управления и контроля ЗС и сетями спутниковой связи и вещания.

Специалистами НИИР были созданы многие национальные спутниковые системы связи и вещания, находящиеся в эксплуатации и поныне . Приемо-передающее наземное и бортовое оборудование этих систем также было разработано в НИИР. Помимо оборудования специалисты института предложили методики проектирования как самих спутниковых систем, так и отдельных, входящих в их состав устройств. Опыт проектирования спутниковых систем связи специалистов НИИР отражен в многочисленных научных публикациях и монографиях.


6.1. Первые спутниковые линии связи и вещания через ИСЗ "Молния-1"

Первые эксперименты по спутниковой связи путем отражения радиоволн от американского отражающего спутника "Эхо" и Луны, используемых в качестве пассивных ретрансляторов, проводились специалистами НИИР в 1964 г . Радиотелескопом в обсерватории в поселке Зименки Горьковской области были приняты телеграфные сообщения и простой рисунок из английской обсерватории "Джодрелл Бэнк".

Этот эксперимент доказал возможность успешного использования космических объектов для организации связи на Земле.

В лаборатории спутниковой связи были подготовлены несколько системных проектов, а затем она приняла участие в разработке первой отечественной системы спутниковой связи "Молния-1" в диапазоне частот ниже 1 ГГц. Головной организацией по созданию этой системы был Московский научно-исследовательский институт радиосвязи (МНИИРС). Главным конструктором системы "Молния-1" является М.Р. Капланов - заместитель руководителя МНИИРС.

В 60-е годы в НИИР велась разработка приемо-передающего комплекса тропосферной радиорелейной системы "Горизонт", также работающей в диапазоне частот ниже 1 ГГц. Этот комплекс был модифицирован и созданная аппаратура, названная "Горизонт-К", использовалась для оснащения первой спутниковой линии связи "Молния-1", связавшей Москву и Владивосток. Эта линия предназначалась для передачи ТВ-программы или группового спектра 60 телефонных каналов. При участии специалистов НИИР в этих городах были оборудованы две земные станции (ЗС). В МНИИРС был разработан бортовой ретранслятор первого искусственного спутника связи "Молния-1", успешный запуск которого состоялся 23 апреля 1965 г . Он был выведен на высокоэллиптическую орбиту с периодом обращения вокруг Земли 12 ч. Такая орбита была удобна для обслуживания территории СССР, рас положенной в северных широтах, так как в течение восьми часов на каждом витке ИСЗ был виден с любой точки страны. Кроме того, запуск на такую орбиту с нашей территории осуществляется с меньшими затратами энергии, чем на геостационарную. Орбита ИСЗ "Молния-1" сохранила свое значение до сих пор и используется, несмотря на преобладающее развитие геостационарных ИСЗ.

6.2.Первая в мире спутниковая система "Орбита" для распределения ТВ-программ

После завершения исследований технических возможностей ИСЗ "Молния-1" специалистами НИИР Н.В. Талызиным и Л.Я. Кантором было предложено решить проблему подачи ТВ-программ центрального телевидения в восточные районы страны путем создания первой в мире системы спутникового вещания "Орбита" в диапазоне 1 ГГц на базе аппаратуры "Горизонт-К".

В 1965-1967 гг. в рекордно короткие сроки в восточных районах нашей страны было одновременно сооружено и введено в действие 20 земных станций "Орбита" и новая центральная передающая станция "Резерв". Система "Орбита" стала первой в мире циркулярной, телевизионной, распределительной спутниковой системой, в которой наиболее эффективно использованы возможности спутниковой связи.

Следует отметить, что диапазон, в котором работала новая система "Орбита" 800-1000 МГц, не соответствовал тому, который был распределен в соответствии с Регламентом радиосвязи для фиксированной спутниковой службы. Работа по переводу системы "Орбита" в С-диапазон 6/4 ГГц была выполнена специалистами НИИР в период 1970-1972 гг. Станция, функционирующая в новом диапазоне частот, получила название "Орбита-2". Для нее был создан полный комплекс аппаратуры для работы в международном диапазоне частот - на участке Земля-Космос - в диапазоне 6 ГГц, на участке Космос-Земля - в диапазоне 4 ГГц. Под руководством В.М. Цирлина была разработана система наведения и автосопровождения антенн с программным устройством. В этой системе использовались экстремальный автомат и метод конического сканирования.

Станции "Орбита-2" начали внедряться с 1972 г ., а к концу 1986 г . их было построено около 100. Многие из них и в настоящее время являются действующими приемо-передающими станциями.

В дальнейшем для работы сети "Орбита-2" был создан и выведен на орбиту первый советский геостационарный ИСЗ "Радуга", многоствольный бортовой ретранслятор которого создавался в НИИР (руководитель работы А.Д. Фортушенко и ее участники М.В. Бродский, А.И. Островский, Ю.М. Фомин и др.) При этом были созданы и освоены технология изготовления и методы наземной обработки космических изделий.

Для системы "Орбита-2" были разработаны новые передающие устройства "Градиент" (И.Э. Мач, М.З. Цейтлин и др.), а также параметрические усилители (А.В. Соколов, Э.Л. Ратбиль, B.C. Санин, В.М. Крылов) и устройства приема сигналов (В.И. Дьячков, В.М. Доро феев, Ю.А. Афанасьев, В.А. Полухин и др.).

6.3. Первая в мире система непосредственного ТВ-вещания "Экран"

Широкое развитие системы "Орбита", как средства подачи ТВ-программ, в конце 70-х годов стало экономически неоправданным из-за большой стоимости ЗС, делающей нецелесообразной ее установку в пункте с населением менее 100-200 тыс. человек. Более эффективной оказалась система "Экран", работающая в диапазоне частот ниже 1 ГГц и имеющая большую мощность передатчика бортового ретранслятора(до 300 Вт). Целью создания этой системы было охват ТВ-вещанием малонаселенных пунктов в районах Сибири, Крайнего Севера и части Дальнего Востока. Для ее реализации были выделены частоты 714 и 754 МГц, на которых было возможно создать достаточно простые и дешевые приемные устройства. Система "Экран" стала фактически первой в мире системой непосредственного спутникового вещания.

Приемные установки этой системы должны были быть рентабельными как для обслуживания небольших населенных пунктов, так и для индивидуального приема ТВ-программ.

Первый спутник системы "Экран" был запущен 26 октября 1976 г . на геостационарную орбиту в точку 99° в.д. Несколько позднее в Красноярске были выпущены станции коллективного приема "Экран-КР-1" и "Экран-КР-10" с мощностью выходного телевизионного передатчика 1 и 10 Вт. Земная станция, передающая сигналы на ИСЗ "Экран", имела антенну с диаметром зеркала 12 м, она была оборудована передатчиком "Градиент" мощностью 5 кВт, работающим в диапазоне 6 ГГц. Приемные установки этой системы, разработанные специалистами НИИР, были наиболее простыми и дешевыми приемными станциями из всех, реализованных в те годы. К концу 1987 г. число установленных станций "Экран" достигло 4500 шт.

6.4.Системы распределения ТВ-программ "Москва" и "Москва-Глобальная"

Дальнейший прогресс в развитии систем спутникового ТВ-вещания в нашей стране связан с созданием системы "Москва", в которой технически устаревшие ЗС системы "Орбита, были заменены на малые ЗС. Разработка малых ЗС началась в 1974 г. по инициативе Н.В. Талызина и Л.Я. Кантора.

Для системы "Москва" на ИСЗ "Горизонт" был предусмотрен ствол повышенной мощности, работающий в диапазоне 4 ГГц на узконаправленную антенну. Энергетические соотношения в системе были выбраны таким образом, что обеспечивали применение на приемной ЗС небольшой параболической антенны с диаметром зеркала 2,5 м без автоматического наведения. Принципиальной особенностью системы "Москва" являлось строгое соблюдение норм на спектральную плотность потока мощности у поверхности Земли, установленных Регламентом ради связи для систем фиксированной службы . Это позволяло использовать эту систему для ТВ-вещания на всей территории СССР. Система обеспечивала прием с высоким качеством центральной ТВ-программы и программы радиовещания. Впоследствии в системе был создан еще один канал, предназначенный для передачи газетных полос.

Эти станции получили также широкое распространение в отечественных учреждениях, расположенных за рубежом (в Европе, на севере Африки и ряде других территорий), что дало возможность нашим гражданам за рубежом принимать отечественные программы. При создании системы "Москва" был использован ряд изобретений и оригинальных решений, позволивших усовершенствовать как построение самой системы, так и ее аппаратурные комплексы. Эта система послужила прототипом для многих спутниковых систем, созданных позже в США и Западной Европе, в которых для подачи программ ТВ на ЗС малого размера и умеренной стоимости использовались ИСЗ средней мощности, работающие в диапазоне фиксированной спутниковой службы.

В течение 1986-1988 гг. была проведена разработка специальной системы "Москва-Глобальная" с малыми ЗС, предназначенной для подачи центральных ТВ-программ в отечественные представительства за рубежом, а также для передачи небольшого объема дискретной информации. Эта система также находится в эксплуатации. В ней предусмотрена организация одного ТВ-канала, трех каналов для передачи дискретной информации со скоростью 4800 бит/с и двух каналов со скоростью 2400 бит/с. Каналы передачи дискретной информации использовались в интересах Комитета по телевидению и радиовещанию, ТАСС и АПН (Агентство политических новостей). Для охвата практически всей территории Земного шара в ней используются два спутника, расположенные на геостационарной орбите на 11° з.д. и 96° в.д. Приемные станции имеют зеркало диаметром 4 м, аппаратура может располагаться как в специальном контейнере, так и в помещении.

Владельцы мобильных телефонов при всех их возможностях могут звонить лишь там, где оборудованы станции мобильной связи. А что делать там, где таких станций нет?

Выход только один - использовать телефоны спутниковой связи, дающее возможность звонить практически из любой точки мира. Как понятно из названия связи, соединение происходит не через наземные станции, а через спутники, находящиеся на околоземной орбите.

По всем сетям спутниковой связи предоставляется надежная и качественная телефония. Сети различаются по предлагаемым абонентам дополнительным услугам, по областям покрытия сетью, и по цене самих аппаратов и стоимости услуг связи.

На сегодняшний день спутниковая связь представлена в мире различными системами со своими достоинствами и недостатками. Что же касается России, то пока на ее территории доступными являются системы Инмарсат, Турайя, Глобалстар и Иридиум:

  • Инмарсат (Inmarsat) - первый и пока единственный оператор мобильной спутниковой связи, предлагающий все услуги современной спутниковой связи на водных пространствах, на земле и в воздухе.
  • Турайя (Thuraya) - мобильная спутниковая связь, покрывающая одну треть земного шара и предлагающая недорогие звонки своим абонентам с ценой от $0,25 за минуту исходящего звонка и бесплатные входящие (по спутнику). Спутниковые телефоны Турайя совмещены с сотовыми, в которых есть приемник GPS, определяющий местонахождение с точностью до 100 метров. Связь доступна на 1/3 территории России.
  • Глобалстар (Globalstar) - это спутниковая связь нового поколения. Глобалстар предоставляет телефонную связь в тех районах Зземли, где раньше ее не было вообще или были серьезные ограничения в ее использовании и дает возможность звонить или обмениваться данными в практически любом районе планеты.
  • Иридиум (Iridium) - предоставляет беспроводную спутниковую сеть, обеспечивающую телефоннию везде и всегда. Связь от Иридиума покрывает всю поверхность Земли. В России сеть Иридиум доступна на всей территории, однако пока на обладает лицензией предоставлять услуги на территории РФ.

Спутниковая связь Инмарсат

Система Инмарсат предоставляет стационарную спутниковую связь, определяющую главное направление ее использования.

Эта система широко используется на наземном, морском, речном, воздушном транспорте, в органах управления, работниками государственных учреждений, в подразделениях гражданской обороны, в спасательных организациях и подразделениях МЧС, а также главами государств.

Система Инмарсат действует уже более 25 лет и проверена временем. На данный момент это третье поколение данной системы. Задействованные четыре геостационарные спутника покрывают весь Земной шар и только полюса земли остались без покрытия этой системой.

C терминала Инмарсат звонок сначала попадает на спутник, который его перенаправляет на станцию (LES). Она в свою очередь отвечает за перенаправление звонка в телефонные сети общего пользования или в интернет. Спутник может выделить дополнительные лучи на работу с регионом, в котором наблюдается большая активность абонентов.

Система не только поддерживает стандартные телефоны, но и оборудование, которое отслеживает местонахождение абонентов, что позволяет производить мониторинг движущихся объектов, таких как суда, автомобили, самолеты. Система используется для безопасности в мореплавании (ГМССБ) и для организации управления воздушного движения.

К достоинствам системы Инмарсат отнесем ее работу практически на всей поверхности Земли, за исключением Северного и Южным полюсов.

Инмарсат - официальная система обеспечения безопасности на море. Система в достаточной мере конфиденциальна, несложна в использовании, снабжается инструкциями на русском языке.

Биллинговая онлайн-система позволяет следить через интернет за состоянием счета с полной статистикой по телефонным звонкам. Доступны дополнительные аксессуары, например, специальные комплекты на автомобили, факсы и другое оборудование, плюс бесплатные входящие звонки.

К недостаткам системы Инмарсат надо отнести высокую стоимость самих телефонов, их цена начинается от $3000, высокую стоимость исходящих звонков - от $2,8 за минуту, а также сами терминалы размером с ноутбук и весящие порядка 2 кг.

Для использования телефонов этой системы на территории определенной страны требуется получить специальные разрешения. В России компанией ТЕССКОМ телефоны Инмарсат продаются уже с разрешением пользоваться системой Инмарсат на территории нашей страны.

Спутниковая связь Турайя

Сначала система Турайя была рассчитана на обслуживание региона с 1,8 миллионами потенциальных абонентов.

Работу системы обеспечивают 2 спутника, способные одновременно обслужить 13750 телефонных каналов. Система способна работать как со спутниковыми, так и с сотовыми каналами связи. Но, порой, звонки в роуминге обходятся в пять раз дороже, чем через спутник. Пользоваться системой Турайя можно на 35% территории России.

К достоинствам Турайя можно отнести небольшие размеры телефонов и их невысокую стоимость (начиная с $866), использование единого номера для спутниковой или сотовой связи, приемлемую стоимость исходящих звонков (от $0,25/минута) и бесплатные входящие звонки через спутник.

Недостатки системы Турайя: доступность сети только на 35 % территории РФ. Правда, положение значительно улучшится с вводом в действие еще одного спутника. Тогда покрытие территории России будет достигать уже 80%. Но это пока вопрос времени.

Спутниковая связь Глобалстар

Глобалстар является системой, основу которой составляет подвижная спутниковая связь. С самого начала сеть Глобалстар формировалась как система, взаимодействующая с существующими мобильными сетями. То есть вне действия сотовых сетей, с которыми заключен договор, телефоны Глобалстар переключаются на спутниковую связь, а при хорошем сигнале наземной мобильной связи они работают как обычной сотовый.

Система рассчитывалась на широкий круг потребителей. И действительно, сейчас сетью Глобалстар пользуются как частные лица, так и организации.

Самые активные пользователи этой системой - нефтяники и газовики, геологи и геофизики, добытчики и переработчики драгметаллов, строители, энергетики. Успешно используется эта Глобалстар в транспорте, в войсках, на флоте, в МЧС.

Связь в системе Глобалстар обеспечивается 48 низкоорбитальными спутниками. Сигнал одновременно через несколько спутников принимается ближайшими наземными станциями сопряжения, затем наиболее устойчивый маршрутизируется по наземным сетям до абонента.

Глобалстар является единственной из подобных систем связи, которая обеспечивает почти полное покрытие территории Российской Федерации с Запада на Восток и до 74-го градуса на Севере.

К достоинствам Глобалстара отнесем работу практически на всей территории Земли, за исключением полярных областей; небольшие размеры и вес телефонов, сравнимые по этим показателям с обычными сотовыми телефонами; автоматическое переключение между спутниковой и сотовой системами связи; простоту в использовании; инструкции на русском языке. Весьма приемлемая цена телефонов - от $699.

Если используется спутниковый канал связи, то цена звонков в Глобалстаре начинается с $1.39. Зчительно дешевле становится при звонках через сотовые каналы.

Предлагается много дополнительных аксессуаров. В отличие от систем, работающих на среднеорбитальных и геостационарных спутниках, при работе в Глобалстаре практически незаметны задержка голоса или "эхо".

Недостатков у Глобалстар мало. Хотя, в целом, разрешение на телефоны системы Глобалстар не требуется, есть страны, где их использование ограничивается или полностью запрещается.

Спутниковая связь Иридиум

Связь в системе Иридиум обеспечивается 66 низкоорбитальными спутниками, которые покрывают 100% земной поверхности. Но в Северной Корее, Венгрии, Польши и Северной Шри-Ланке система не работает. В РФ сеть Иридиум на сегодняшний день не лицензирована, но доступна на всей ее территории. Так как расстояние до спутников небольшое, а скорость у них высокая, то сигналы передаются почти без задержки. В районах с доступной сотовой связью телефон может работать как обычный сотовый.

Главное достоинство Иридиум - устойчивая связь на всей территории планеты.

Иридиум может похвастаться и самыми маленькими из всех спутниковыми телефонами. Как и в других системах, телефоны автоматически переключаются между спутниковыми и мобильными сетями. Недорогие звонки, всего от $1 по спутниковому каналу, а через сотовую связь - еще дешевле. Входящие звонки полностью бесплатны. Как и в системе Глобалстар, в Иридиуме практически незаметна задержка голоса и эхо.

Единственным значимым недостатком Иридиума является отсутствие лицензии для работы на территории РФ. Правда, как утверждают представители компании, разрешение для работы в России вскоре будет получено.

Услуги для абонентов спутниковых сетей

Услуга Инмарсат Турайя Глобалстар Иридиум
Телефон + + + +
Факс + - - -
Электронная почта + + - -
Передача данных + + + +
Телекс + - - -
GPS + + + -
SMS - - - -
Пейджинг - - - +

Фиксированные спутниковые службы (ФСС) предназначены для организации связи с неподвижными земными станциями и обычно строятся на базе спутников-ретрансляторов, запускаемых на геостационарную орбиту. Из-за большой высоты орбиты и связанных с этим значительных потерь сигнала на линии космос-земля, для работы с геостационарными спутниками связи используются узконаправленные параболические антенны ("тарелки") с диаметром зеркала от 60 см до 12 и более метров, в зависимости от характеристик бортовых ретрансляторов.

Антенны средних размеров (1,2 - 3,8 м) применяются для организации двусторонней связи в спутниковых телекоммуникационных сетях (региональные, местные и корпоративные сети связи, передача данных, распределение телепрограмм и т.п.) на базе спутников средней мощности.

Антенны размером менее 1 м нашли широкое применение в системах непосредственного спутникового телевизионного вещания (НТВ) на базе специализированных мощных спутников, а также в сетях высокоскоростного доступа в Интернет.

Спутники "Горизонт" и "Экспресс" являются маломощными магистральными системами, для работы с ними необходимы антенны размером 4,5-12 м.

К системам средней мощности можно также отнести спутники "Экспресс-М", "Купон", "Ямал", позволяющие использовать для работы с ними небольшие земные станции с антеннами диаметром 1,2-2,4 м. Примером системы НТВ являются отечественные спутники "Галс", "Бонум-1" и зарубежные "Астра" и "ДирекТВ", работающие с антеннами диаметром 45-90 см.

В настоящее время в мире эксплуатируется более сотни геостационарных спутников связи различного назначения. До 80% ресурсов геостационарных спутниковых систем используются для распределения телевизионных программ. Остальные ресурсы загружены передачей данных и телефонной связью.

Мобильные спутниковые службы (МСС) используются для связи с подвижными объектами. В настоящее время наиболее популярной является система МСС "Инмарсат"(Inmarsat), построенная на геостационарных спутниках. Первоначально система создавалась для обеспечения связи с морскими судами, но затем она стала применяться и на суше. Существует широкий спектр абонентских станций "Инмарсат", устанавливаемых на судах, автомобилях, самолетах, а также портативных, размером с атташе-кейс, используемых в отдаленных районах и в зонах стихийных бедствий. Дальнейшим развитием МСС является создание систем, способных работать с небольшими, размером с сотовый телефон, абонентскими станциями, что требует использования специализированных спутников, обычно размещаемых на низких орбитах (500-1500 км). Относительно малая высота их орбиты позволяет существенно сократить размеры и мощность абонентских устройств. Спутники в этом случае перемещаются относительно поверхности земли, находясь в зоне видимости абонента лишь 10-15 минут, поэтому для поддержания непрерывности связи на орбите должно находиться много спутников.

Уже начата эксплуатация первой такой системы - МСС "Иридиум" и еще нескольких подобных систем. Из-за малого времени нахождения одного спутника в зоне видимости абонента (для системы "Иридиум" оно составляет лишь 7 минут), для обеспечения непрерывности связи спутниковая группировка должна состоять из нескольких десятков спутников.

Например, российский проект "Гонец" предусматривает запуск 36 спутников, а международные системы состоят из 48-ми ("Глобалстар"), 66-ти ("Иридиум") и, даже, 288-ми ("Теледесик") спутников.

Недостатком низкоорбитальных систем является сложность космической группировки и управления ею, а также необходимость постоянной замены спутников из-за короткого срока их существования на низких орбитах (5-7 лет в сравнении с 12-15 годами для геостационарных), что существенно повышает стоимость услуг таких систем. Серьезную конкуренцию низкоорбитальным могут составить системы МСС на базе мощных геостационарных спутников, а также спутниковых систем на высокоэллиптических орбитах. Современные спутниковые системы предлагают широкий спектр услуг связи от распределения телевизионных и радиопрограмм, региональных, корпоративных и глобальных сетей связи и обмена данными до персональной связи с любой точкой планеты с помощью портативных спутниковых терминалов. В зависимости от потребностей пользователей, используются различные комбинации наземных и спутниковых систем связи. Во многих случаях, системы спутниковой связи оказываются наиболее дешевым и экономически выгодными в сравнении с наземными системами.

Диапазоны частот

Использование различных частот для систем радиосвязи и вещания, включая спутниковые, строго регламентируется международными организациями. Это необходимо для достижения совместимости различных систем, а также для предотвращения взаимных помех при работе различных служб. В 1977 году состоялась Всемирная административная радио конференция (WARC-77) по планированию вещательной спутниковой службы, на которой был принят ныне действующий Регламент радиосвязи. В соответствии с ним вся территория Земли разделена на три района, для вещания в каждом из которых выделены свои полосы частот.

Район 1 включает Африку, Европу, Россию, Монголию и страны СНГ.

Район 2 охватывает территорию Северной и Южной Америки.

Район 3 это территории Южной и Юго-Восточной Азии, Австралия и островные государства Тихо-Океанского региона.

В соответствии с этим регламентом для систем спутниковой связи выделено несколько диапазонов частот, каждый из которых получил условное обозначение буквой латинского алфавита.

Наименование диапазона

Полоса частот в ГГц

L-диапазон

1,452-1,550 и 1,610-1,710

S - диапазон

С - диапазон

3,40 -5,25 и 5,725 - 7,075

X - диапазон

Ки - диапазон

10,70 - 12,75 и 12,75 - 14,80

Ка - диапазон

15,40 - 26,50 и 27,00 - 30,20

К - диапазон

Большинство действующих систем спутниковой связи на базе геостационарных спутников работают в диапазонах С (6/4 Ггц) и Ku (14/11 Ггц). Ка - диапазон в нашей стране пока широко не применяется, но идет его бурное освоение в Америке и Европе.

Эффективность приемных зеркальных антенн ("тарелок") пропорциональна числу длин волн, укладывающихся в ее поперечнике. А длина волны с увеличением частоты уменьшается. Следовательно, при одинаковой эффективности размеры антенн уменьшаются с увеличением частоты. Если для приема в диапазоне С требуется антенна 2,4 - 4,5 м, то для диапазона Ku ее размер уменьшится до 0,6 - 1,5 м, для диапазона Ка он может быть уже 30 - 90 см, а для К - диапазона - всего 10 - 15 см.

При одинаковых размерах антенна в диапазоне Ku имеет коэффициент усиления примерно на 9,5 дБ больше, чем в диапазоне C. Обычно, ЭИИМ спутников в диапазоне C не превышает 40-42 дБ, тогда как в диапазоне Ku нередки уровни ЭИИМ 50-54 дБ для систем фиксированной спутниковой связи, и даже 60-62 дБ для спутников систем НТВ. По тем же причинам, коэффициент усиления приемных антенн на спутниках-ретрансляторах в диапазоне Ku выше, чем в диапазоне C. В результате, размеры антенн и мощность передающих устройств земных станций в диапазоне Ku в большинстве случаев меньше, чем в диапазоне C.

Например, для работы со спутником "Горизонт" в диапазоне C требуются земные станции с антеннами не менее 3,5 м и передатчиком около 20 Вт. В то же время, земные станции с такой же пропускной способностью для работы со спутником "Интелсат" (Intelsat) в диапазоне Ku могут оснащаться антеннами диаметром 1,2 м и передатчиком 1 Вт. Стоимость первой станции примерно в два раза выше, чем второй при одинаковых пользовательских характеристиках.

В пользу диапазона Ku говорит также факт, что полоса частот, выделенных МСЭ для систем спутниковой связи в этом диапазоне, более чем два раза превышает полосу в диапазоне C.

К недостаткам диапазона Ku следует отнести повышенные, по сравнению с диапазоном C, потери во время дождя, что требует создания запаса по усилению антенны для их компенсации. Это ограничивает применение диапазона Ku в регионах с тропическим и субтропическим климатом. Для большинства же районов России необходимый запас не превышает 3-4 дБ, для создания которого достаточно увеличить диаметр антенны на 20-30% в сравнении с регионами с сухим климатом.

В связи с изложенным, большинство сетей спутниковой связи на базе VSAT строятся в диапазоне Ku.

Для работы систем спутниковой связи выделяются определенные полосы частот, в рамках которых возможно размещение большого числа каналов.

При используемых в настоящее время методах модуляции полоса частот одного симплексного (однонаправленного) канала, выраженная в килогерцах (кГц), примерно равна скорости передачи, выраженной в килобитах в секунду (кбит/с). Таким образом, для передачи данных в одном направлении со скоростью 64 кбит/с требуется полоса около 65 кГц, а для канала Е1 (2048 кбит/с) необходима полоса частот около 2 МГц.

Для двухсторонней (дуплексной) связи требуемую полосу необходимо удвоить. Следовательно, для организации дуплексного канала со скоростью передачи 2 Мбит/с потребуется полоса частот около 4 МГц. Это соотношение выполняется и для большинства других радиоканалов, а не только спутниковых.

Для стандартного спутникового ствола с полосой 36 МГц максимальная скорость передачи составляет около 36 Мбит/с. Но большинству пользователей такие высокие скорости не нужны и они используют лишь часть этой полосы. Поэтому в одном стволе спутника могут работать десятки пользователей и необходимо предпринимать меры по разделению сигналов различных пользователей.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Средства спутниковой связи

Спутниковая антенна

Спутниковая антенна -- это зеркальная антенна для приёма сигнала со спутника. Самыми распространёнными спутниковыми антеннами являются параболические антенны (их обычно и называют спутниковыми). Спутниковые антенны имеют различные типы и размеры. Наиболее часто подобные антенны используются для приёма и передачи программ спутникового телевидения и радио, а также соединения с Интернетом. Существует два вида параболических антенн -- прямофокусные и офсетные.

Прямофокусная антенна

Прямофокусная (осесимметричная) антенна является антенной классического типа параболоида вращения. Это способствует более точной ориентации на выбранный спутник. Обычно такие антенны используются для приёма сигнала в C-диапазоне, как более слабого, чем сигнал в Ku-диапазоне. Однако возможен приём сигнала и в Ku-диапазоне, а также комбинированный.

Офсетная антенна

Офсетная антенна -- наиболее распространена в индивидуальном приеме спутникового телевидения, хотя в настоящее время используются и другие принципы построения наземных спутниковых антенн. Офсетная антенна является эллиптическим параболоидом (в поперечном сечении эллипса). Фокус такого сегмента расположен ниже геометрического центра антенны. Это устраняет затенение полезной площади антенны облучателем и его опорами, что повышает ее коэффициент полезного использования при одинаковой площади зеркала с осесимметричной антенной. К тому же, облучатель установлен ниже центра тяжести антенны, тем самым увеличивая ее устойчивость при ветровых нагрузках. Офсетная антенна крепится почти вертикально. В зависимости от географической широты угол ее наклона немного меняется. Такое положение исключает собирание в чаше антенны атмосферных осадков, которые сильно влияют на качество приема. Обычно офсетные антенны используются для приёма сигнала Ku-диапазона (в линейной и круговой поляризации). Однако, возможен и приём сигнала в C-диапазоне, а также комбинированный.

Тороидальная антенна

Тороидальная параболическая антенна -- продукт новой категории, для приема спутникового сигнала с нескольких спутников без применения поворотных устройств. В отличии от обычных антенн эта парабола имеет более тщательно спроектированную отражающую поверхность. С помощью второго отражателя реализована возможность установки большего числа конвертеров для приема сигнала. В специфических условиях эта параболическая антенна открывает новые возможности для приема спутникового сигнала.Антенна изготовлена из гальванизированной стали покрытой полиэстеровым лаком. На держателе можно разместить до 16 конвертеров. Минимальный отступ между двумя соседними конвертерами: 3 градуса.Установка антенны требует точного соблюдения азимута, угла места, и наклона.

Для изготовления спутниковых антенн в основном используют сталь и дюралюминий. Любители спутникового ТВ иногда устанавливают мотоподвес (мотор), или позиционер. При помощи актюатора и по команде пользователя (или команде с тюнера) он позволяет повернуть антенну в позицию нужного вам спутника.

Какие бывают спутниковые антенны

В общем, пора приступить к написанию постов по конкретным элементам систем приема спутникового ТВ. Начну - с антенн.

Как я уже писал, уровень сигнала геостационарного спутника очень мал, поэтому для приема применяются узконаправленные антенны. Любая спутниковая антенна имеет в своем составе малошумящий деполяризатор-усилитель-конвертер (LNB - Low Noise Block). Фактически, сама “антенна” очень мала, а громадные “тарелки” - это всего лищь отражатели, фокусирующие сигнал в одной точке.

Самый простой и распространенный тип спутниковой антенны - это однозеркальная антенна с параболическим отражателем. Как известно, замечательное свойство параболы состоит в том, что параллельные ее оси лучи она фокусирует в одну точку. Если же изготовить металлический отражатель в форме параболы, то радиоволны от спутника, отразившись от него, сфокусируются в этой точке, в которой и размещается собственно приемная антенна, встроенная в LNB.

Выпускаются прямофокусные и оффсетные антенны. Прямофокусная антенна имеет осесимметричную форму, конвертер на ней располагается по центру. Принцип работы такой антенны наглядно можно показать на рисунке:

Подобная конструкция довольно проста, прямофокусные антенны можно собирать из отдельных “лепестков”, что дает преимущество при изготовлении больших антенн.

К сожалению, у прямофокусных тарелок имеются и недостатки. Во-первых, на рисунке “угол места” спутника (”высота” его над горизонтом) не очень большой. Если же спутник находится достаточно высоко (как чаще и бывает, например, в Москве угол места для Eutelsat W4 составляет 26 градусов), то “тарелка” смотрит высоко в небо и собирает внутри себя все осадки. Напомню, что СВЧ-сигнал через снег и воду не проходит. Во-вторых, у прямофокусной тарелки крепление конвертера находится довольно высоко, и для его обслуживания приходится куда-нибудь залезать.

Второй вариант - офсетные (то есть “смещенные”) тарелки, где “срез” делается не перпендикулярно оси параболы, а под некоторым углом. Выглядит это так:

Такая антенна отражает лучи не перпендикулярно своей плоскости, а “вниз”. Конвертер у нее находится не напротив центра антенны, а выносится в точку фокуса на “штанге”, прикрепленной к нижней части отражателя. В отличие от крепления конвертера на прямофокусной антенне, эта штанга с конвертером не “затеняют” полезную площадь отражателя, поэтому антенны небольших размеров (до метра в диаметре) преимущественно деляют офсетными.

Кстати, для жильцов дома напротив офсетная тарелка кажется направленной в их сторону, что пугает всевозможных параноидальных старушек. Они начинают писать письма во все инстанции с обвинениями владельца антенны в собственных болячках - “он нас облучает”. Не надо ставить очень большие антенны прямо перед чьими-то окнами.

Довольно важный показатель для параболической антенны - фокусное расстояние. В большинстве простых случаев оно не имеет значения, но при сборке систем для C-диапазона или установке мультифидов знание его будет очень полезно. Подробнее о влиянии фокусного расстояни речь пойдет в следующих записях, посвященных сложным приемным системам.

Отдельно следует упомянуть сетчатые или перфорированные антенны. Если “сетки”, особенно прямофокусные, довольно распространены и неплохо себя зарекомендовали в C-диапазоне, то для Ku-диапазона они не очень хороши. Из-за эффектов волновой оптики на отражение радиосигнала не влияют мелкие отверстия в рефлекторе, по размерам сравнимые с длиной волны. Для C-диапазона вполне допустимо изготовление антенн из мелкоячеистой сетки. Такие антенны получаются дешевле “сплошных” и выдерживают большую ветровую нагрузку, а это при диаметре полтора-два метра уже критично.

В Ku-диапазоне такие антенны уже не очень хороши. Впрочем, и здесь есть возможность снизить ветровую нагрузку. Питерская фирма Lans выпускает небольшие (60, 90 и 120 см) перфорированные антенны для Ku-диапазона. Они делаются не из сетки, а из металлического листа с небольшими (2-3 мм) отверстиями. Стоимость, правда, возрастает за счет использования перфорированного стального листа, но не критично. У меня стоят две такие антенны (60 и 90 см), я не жалуюсь.

Кроме однозеркальных параболических антенн, существуют и другие варианты антенн с отражателем. Я упомяну про антенны Кассегрена, Грегори и тороидальные антенны. Схемы Кассегрена и Грегори - это антенны с двумя рефлекторами. У Кассегрена первый рефлектор имеет параболическую форму, второй - гиперболическую, у Грегори оба рефлектора - параболы. Полезное свойств таких антенн - низкая кроссполяризация, то есть они эффективно предотвращают “смешивание” сигналов разных поляризаций. В большинстве случаев это неважно, но такие антенны используются некоторыми энтузиастами спутникового ТВ. Подробнее о них можно прочитать на форуме Альяно. На фотографии - антенна Грегори, сделанная на базе обычной офсетной “параболы”.

Отдельно стоит упомянуть про “тороидальные” антенны. Этот тип двухзеркальных антенн появился сравнительно недавно, но сразу получил большое распространение. Замечательное свойство тороидальной антенны состоит в том, что она нормально фокуирует всю “дугу Кларка”, а не один-единственный спутник, на который она направлена. Такая антенна позволяет одновременно принимать спутники с разбросом орбитальных позиций в 50 градусов. Согласитесь, звучит заманчиво. К сожалению, сейчас выпускаются только тороидалки, эквивалентные по параметрам 90 см антенне, а это не очень много для приема интересных “европейских” спутников. В Москве на 90 см можно принимать 9E, 13E, 36E и 80E - две “обычные” тарелки (одна с мультифидом 9+13+36) обойдутся дешевле.

В сытой и богатой Европе, над которой висит множество мощных спутников, иногда применяют диэлектрические антенны, в которых фокусировка осуществляется “линзой” из диэлектрика. Знающий физику поймет, не знающий - поверит на слово. Отражатель в таких антеннах - плоский, а LNB крепятся на специальном держателе.

Кроме того, недавно появились плоские антенны. В них нет LNB, а антенна состоит из множества одинаковых приемных “модулей”, работающих по принципу фазированной решетки. Контролер антенны может переключать эти модули в соответствии с заданным направлением и поляризацией сигнала.

Стоимость даже небольшой такой антенны довольно высока - представьте, сколько в ней напихано малошумящих СВЧ-транзисторов.

Напоследук упомяну о том, что в той же сытой и благополучной Европе для приема спутников можно применять и “обычные” направленные антенны (вариации на тему Яги, радиолюбители поймут). В таких антеннах LNB “встроен” в антенну - как усилитель в популярные “польские” антенны для эфирного ТВ.

Несмотря на обилие “экзотических” антенн, “любительские” системы приема спутникового ТВ обычно построены на базе однозеркальных параболических антенн. Поэтому дальше речь пойдет именно про них.

В России и на Украине доступно огромное количество спутниковых антенн разных производителей: польские Globo, Mabo, датские Triax, харьковские “Вариант”, ульяновские “Супрал”, петербургские Lans, немецкие Golden Interstar, и многочисленные китайские поделки на тему “2 метра из фольги”. Выбор богат, но сильно зависит от региона, поэтому ограничусь общими рекомендациями.

Большие антенны (более 120 см в диаметре) применяются в основном в C-диапазоне, для них важно знание фокусного расстояния для правильного выбора облучателя на конвертер. Эти антенны часто бывают прямофокусными. В C-диапазоне допустимо применение недорогих антенн из мелкоячеистой сетки.

Антенны диаметра 120 см и ниже чаще бывают офсетными и применяются для Ku-диапазона. Перфорированные антенны малых диаметров не распространены, но смотрятся необычно.

Основные размеры антенн - 40, 60, 90, 120, 150 и 180 см. Антенны больших диаметров применяются редко. Чем меньше диаметр антенны, тем проще ее настраивать - шире диаграмма направленности (легче “попасть” в спутник) и проще вращать антенну.

“Сплошные” металлические антенны делаются из стали или алюминия. Стальные антенны прочнее и выдерживают более сильный ветер. К сожалению, они довольно тяжелые и дорогие, а также подвержены коррозии при отсутствии обслуживания. Алюминиевые антенны не ржавеют, но менее прочны - особенно грешат этим китайцы, делающие антенны чуть ли не из фольги. При сильном ветре дешевую 120 см прямофокусную тарелку буквально “сворачивает в трубочку”.

Иногда “в хозяйстве” оказываются антенны от всевозможной военной или связной техники. При наличии прямых рук такие антенны идеально подходят для приема спутникового ТВ, а стоимость трехметровой “сетки” от списанной тропосферной станции может составить две бутылки водки.

Спутники, орбиты и диапазоны

спутниковая антенна офсетная параболическая

Впервые система спутниковой связи была описана в статье Артура Кларка (между прочим, известного писателя-фантаста) в 1948 году. Кларк предлагал разместить на геостационарной орбите три спутника, которые могли бы ретранслировать данные друг другу. Такая система обеспечивала бы круглосуточную глобальную связь, действующую везде, кроме приполярных районов.

Между прочим, в статье довольно реалистично описаны те проблемы, которые возникают и сейчас при использовании геостационарных спутников.

Конечно, современные системы спутниковой связи, такие как Iridium, устроены гораздо более сложно. Но именно геостационарные спутники сейчас применяются для телевещания и прочих систем стационарной спутниковой связи.

Основной недостаток геостационарных спутников - высота орбиты. Проходя многие тысячи километров, сигнал очень сильно ослабляется. Поэтому для его приема необходимы узконаправленные антенны довольно внушительных размеров. Раз уж речь зашла про антенны, надо упомянуть о выделенных для канала “спутник-земля” диапазонах.

Сейчас основные диапазоны, используемые для ретрансляции телепрограмм со спутников - это диапазоны C (Це) и Ku (K-upper, Ку). Первый из них охватывает частоты от 3650 до 4200 МГц, второй - от 10700 МГц до 12750 МГц. Естественно, сигнал такой частоты затруднительно передавать по кабелю, поэтому непосредственно на приемной антенне устанавливается малошумящий конвертер (LNB - Low Noise Block), предназначенный для понижения частоты до “спутниковой промежуточной частоты” - от 950 до 2150 МГц. Об устройстве приемных антенн я напишу отдельный пост. Как предсказывал Кларк, на геостационарных спутниках тоже применяются направленные антенны, что позволяет более эффективно использовать мощность установленных на спутнике передатчиков. Зона покрытия такой антенны называется лучом (beam). На большинстве спутников установлена одна или две антенны, иногда направленные в совершенно разные стороны.

Российский и африканский лучи спутника Eutelsat W4

Красная линия на карте - область геометрической видимости спутника, ограниченная проведенной к Земле касательной из точки, где тот находится. Как видно из карты, спутниковое телевидение недоступно разве что полярникам в Антарктиде и эскимосам в Гренландии, во всех остальных точках Земли есть возможность увидеть хотя бы один спутник.

Для того, чтобы указать геостационарный спутник, надо знать его орбитальную позицию - долготу меридиана, над которым тот находится. Например, Eutelsat W4, “висящий” над Восточной Африкой, обычно называют 36E - “36 градусов восточной долготы”, а то и просто - “тридцатишестиградусник”. Сейчас эксплуатируется несколько десятков геостационарных спутников, посмотреть на их зоны покрытия можно на сайте SatBeams.com.

Конечно, в реальной жизни не бывает ничего идеального, и реальные “геостационарные” спутники немного колеблются вокруг своего теоретически предсказанного положения. Дифференциальные уравнения, описывающие движение спутника на орбите, имеют особую точку типа центра - во как загнул! На самом деле это означает, что спутник будет двигаться в окрестности своей позиции по траектории, напоминающей эллипс. Это явление называется либрация.

Обычно спутник за сутки может отклониться от своей орбитальной позиции где-то на полградуса, но многие спутники “удерживаются” в своей позиции гораздо более точно. Колебания спутника обычно незаметны при использовании антенн с небольшими размерами - центральный лепесток их диаграммы направленности имеет “ширину” около 1-2 градусов, но в профессиональных системах с диаметром рефлектора в 3-5 метров приходится дополнять антенну автоматической следящей системой, которая подстраивает антену вслед за колебаниями спутника.

Явление либрации используется при эксплуатации орбитальных группировок - нескольких спутников в одной орбитальной позиции. Параметры либрации спутников согласовываются так, что они двигаются вокруг одной точки по одной траектории, не сталкиваясь друг с другом. Для наземной приемной станции все эти спутники выглядят, как один. Конечно, организация такой “карусели” - довольно сложное мероприятие, приходится постоянно корректировать движение спутников. Обычно спутники, работавшие в составе таких группировок, по мере расхода топлива выводятся в другие орбитальные позиции. На данный момент фирма Eutelsat - крупнейший европейский спутниковый оператор - может обслуживать группировки до пяти космических аппаратов.

Для спутникового телевещания сейчас используются стандарты DVB-S и DVB-S2. Они предусматривают использование цифровых видов модуляции (различные варианты PSK - Phase Shift Keying, передача со сдвигом фазы) с коррекцией ошибок. Ширина полосы сигнала при использовании их для телевещания составляет около 20-30 МГц, а частотный ресурс ограничен. Во-первых, на соседних спутниках не должно вестись вещания на близких частотах, во-вторых, даже в довольно внушительных на первый взгляд С и Ku диапазонах места на самом деле оказывается совсем немного. Положение спасает использование поляризованного сигнала. Обычно применяется “линейная” поляризация (два перпендикулярных направления - “вертикальная” и “горизонтальная”), в России чаще используется “круговая”, когда плоскость поляризации сигнала вращается вправо или влево. LNB позволяют выбирать поляризацию принимаемого сигнала.

Для того, чтобы “настроиться” на сигнал со спутника и декодировать его, необходимо знать частоту и поляризацию транспондера (проще говоря, установленного на спутнике передатчика), символьную скорость (Symbol Rate) - количество передаваемых в секунду символов, варьируется от 3000 до 40000 мегасимволов в секунду, обычно бывает около 27000 Мс/с и FEC - вариант алгоритма коррекции ошибок, указывается в виде дробного числа, например, 5/6 означает, что из 6 битов 5 - биты данных и 1 - проверочный. Декодеры обычно автоматически определяют вид модуляции, и выдают на выходе поток битов - то, что передается по радиоканалу.

В стандартах DVB-S и DVB-S2 предусмотрено мультиплексирование нескольких каналов на одном транспондере. Канал определяется своим номером SID (Service ID), который присутствует во всех пакетах с данными, относящимися к этому каналу. Также могут передаваться аудиодорожки к каналам и “транспортные потоки” - обычно содержащие служебную информацию для каких-либо целей. DVB определяет лишь содержимое аудио- и видеопотока - это тривиальные MPEG-2 и MPEG-4 для видео и MP-3 или AC3 для аудио. Транспортные же потоки могут содержать что угодно - вплоть до данных, используемых “спутниковым интернетом”.

Размещено на Allbest.ru

Подобные документы

    Исследование рынка спутникового телевидения. Схема передачи спутникового сигнала. Оборудование для приема спутникового телевидения. Описания устройства первичного преобразования и усиления сигнала. Виды антенн. Комплекты приема спутникового телевидения.

    курсовая работа , добавлен 01.07.2014

    Общая характеристика зеркальной антенны, ее назначение и применение. Расчет зеркальной параболической антенны сантиметрового диапазона с облучателем в виде пирамидального рупора. Определение коэффициента усиления с учетом неточности изготовления зеркала.

    курсовая работа , добавлен 18.01.2014

    Работа спутниковой компании "Пиорит-ДВ". Монтаж спутниковой антенны, настройка спутникового оборудования. Одновременное использование спутникового ретранслятора несколькими пользователями. Скорость передачи данных, пропускная способность цифрового канала.

    отчет по практике , добавлен 26.01.2013

    Изучение методов сигналов в спутниковой системе связи. Определение зоны обслуживания КС с построением на карте местности, расчет параметров передающей антенны, максимально возможного количества несущих, передаваемых в одном стволе ретранслятора ССС.

    курсовая работа , добавлен 31.05.2010

    Расчет пролёта радиорелейной линии. Выбор оптимальных высот подвеса антенн. Ухудшения связи, вызванные дождем и субрефракцией радиоволн. Энергетический расчет линии "вниз" и "вверх" для спутниковой системы связи. Коэффициент усиления антенны приемника.

    курсовая работа , добавлен 28.04.2015

    Проект и расчет бортовой спутниковой передающей антенны системы ретрансляции телевизионных сигналов. Определение параметров облучателя. Распределение амплитуды поля в апертуре антенны. Аппроксимирующая функция. Защита облучателя от отражённой волны.

    контрольная работа , добавлен 04.06.2014

    Принципы построения территориальной системы связи. Анализ способов организации спутниковой связи. Основные требования к абонентскому терминалу спутниковой связи. Определение технических характеристик модулятора. Основные виды манипулированных сигналов.

    дипломная работа , добавлен 28.09.2012

    История возникновения спутникового телевидения и принцип его работы. Международное регулирование радиочастотных каналов. Непосредственное телевизионное вещание со спутников и диапазоны его частот. Современные Российские операторы спутникового телевидения.

    курсовая работа , добавлен 05.01.2014

    История развития спутниковой связи. Абонентские VSAT терминалы. Орбиты спутниковых ретрансляторов. Расчет затрат по запуску спутника и установке необходимого оборудования. Центральная управляющая станция. Глобальная спутниковая система связи Globalstar.

    курсовая работа , добавлен 23.03.2015

    Особенности построения спутниковой линии связи, методы коммутации и передачи данных. Описание и технические параметры космических аппаратов, их расположение на геостационарных орбитах. Расчет энергетического баланса информационного спутникового канала.

МОУ Парабельская гимназия

Реферат

Спутниковые системы связи

Выполнил

Горошкина Ксения

ученица 11 класса

Проверил

Борисов Александр Владимирович

Парабель

2010 год

Введение 3

1. Принципы организации спутниковых каналов связи 4

2. Орбиты спутников связи 5

3. Типовая схема организации услуг спутниковой связи 6

4. Сферы применения спутниковой связи 6

4.1.Принципы организации спутниковой связи VSAT 7

4.2.Принципы организации подвижной спутниковой связи 7

5. Технологии, используемые в спутниковой связи 8

6. История создания спутниковых систем связи 11

6.1. Первые спутниковые линии связи и вещания через ИСЗ "Молния-1" 12

6.2. Первая в мире спутниковая система "Орбита" для распределения ТВ-программ 13

6.3. Первая в мире система непосредственного ТВ-вещания "Экран" 14

6.4. Системы распределения ТВ-программ "Москва" и "Москва-Глобальная 15

6.5. Система спутникового ТВ-вещания в диапазоне 12 ГГц 16

6.6. Создание системы "Интерспутник" 16

6.7. Создание спутниковой линии правительственной связи 17

6.8. В заключении… 17

Список используемой литературы 20

Введение

Спутниковые системы связи (ССC) известны давно, и используются для передачи различных сигналов на протяженные расстояния. С момента своего появления спутниковая связь стремительно развивалась, и по мере накопления опыта, совершенствования аппаратуры, развития методов передачи сигналов произошел переход от отдельных линий спутниковой связи к локальным и глобальным системам.

Такие темпы развития ССC объясняются рядом достоинств которыми они обладают. К ним, в частности, относятся большая пропускная способность, неограниченные перекрываемые пространства, высокое качество и надежность каналов связи. Эти достоинства, которые определяют широкие возможности спутниковой связи, делают ее уникальным и эффективным средством связи. Спутниковая связь в настоящее время является основным видом международной и национальной связи на большие и средние расстояния. Использование искусственных спутников Земли для организации связи продолжает расширяться по мере развития существующих сетей связи. Многие страны создают собственные национальные сети спутниковой связи.

В нашей стране создается единая автоматизированная система связи. Для этого развиваются, совершенствуются и находят новые области применения различные технические средства связи.

В своем реферате я рассмотрю принципы организации спутниковых систем, сферы применения, историю создания ССС. В наше время спутниковому вещанию уделяется большое внимание, поэтому мы должны знать принцип работы системы.

1. Принципы организации спутниковых каналов связи

Спутниковая связь - один из видов радиосвязи, основанный на использовании искусственных спутников земли в качестве ретрансляторов.

Спутниковая связь осуществляется между земными станциями, которые могут быть как стационарными, так и подвижными. Спутниковая связь является развитием традиционной радиорелейной связи путем вынесения ретранслятора на очень большую высоту (от сотен до десятков тысяч км). Так как зона его видимости в этом случае - почти половина Земного шара, то необходимость в цепочке ретрансляторов отпадает. Для передачи через спутник сигнал должен быть модулирован. Модуляция производится на земной станции. Модулированный сигнал усиливается, переносится на нужную частоту и поступает на передающую антенну.

В первые годы исследований использовались пассивные спутниковые ретрансляторы, которые представляли собой простой отражатель радиосигнала (часто - металлическая или полимерная сфера с металлическим напылением), не несущий на борту какого-либо приёмопередающего оборудования. Такие спутники не получили распространения. Все современные спутники связи являются активными. Активные ретрансляторы оборудованы электронной аппаратурой для приема, обработки, усиления и ретрансляции сигнала. Спутниковые ретрансляторы могут быть нерегенеративными и регенеративными.

Нерегенеративный спутник, приняв сигнал от одной земной станции, переносит его на другую частоту, усиливает и передает другой земной станции. Спутник может использовать несколько независимых каналов, осуществляющих эти операции, каждый из которых работает с определенной частью спектра (эти каналы обработки называются транспондерами).

Регенеративный спутник производит демодуляцию принятого сигнала и заново модулирует его. Благодаря этому исправление ошибок производится дважды: на спутнике и на принимающей земной станции. Недостаток этого метода - сложность (а значит, гораздо более высокая цена спутника), а также увеличенная задержка передачи сигнала.

2. Орбиты спутников связи

Орбиты, на которых размещаются спутниковые ретрансляторы, подразделяют на три класса:

1 - экваториальные, 2 - наклонные, 3 - полярные

Важной разновидностью экваториальной орбиты является геостационарная орбита , на которой спутник вращается с угловой скоростью, равной угловой скорости Земли, в направлении, совпадающем с направлением вращения Земли. Очевидным преимуществом геостационарной орбиты является то, что приемник в зоне обслуживания «видит» спутник постоянно. Однако геостационарная орбита одна, и все спутники вывести на неё невозможно. Другим её недостатком является больша́я высота, а значит, и бо́льшая цена вывода спутника на орбиту. Кроме того, спутник на геостационарной орбите неспособен обслуживать земные станции в приполярной области.

Наклонная орбита позволяет решить эти проблемы, однако, из-за перемещения спутника относительно наземного наблюдателя необходимо запускать не меньше трех спутников на одну орбиту, чтобы обеспечить круглосуточный доступ к связи.

Полярная орбита - предельный случай наклонной.

При использовании наклонных орбит земные станции оборудуются системами слежения, осуществляющими наведение антенны на спутник. Станции, работающие со спутниками, находящимися на геостационарной орбите, как правило, также оборудуются такими системами, чтобы компенсировать отклонение от идеальной геостационарной орбиты. Исключение составляют небольшие антенны, используемые для приема спутникового телевидения: их диаграмма направленности достаточно широкая, поэтому они не чувствуют колебаний спутника возле идеальной точки. Особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала.

3. Типовая схема организации услуг спутниковой связи

  • оператор спутникового сегмента создает за счет собственных средств спутник связи, размещая заказ на изготовление спутника у одного из производителей спутников, и осуществляет его запуск и обслуживание. После выведения спутника на орбиту оператор спутникового сегмента начинает предоставление услуг по сдаче в аренду частотного ресурса спутника-ретранслятора компаниям-операторам услуг спутниковой связи.
  • компания-оператор услуг спутниковой связи заключает договор с оператором спутникового сегмента на использование (аренду) емкостей на спутнике связи, используя его в качестве ретранслятора с большой территорией обслуживания. Оператор услуг спутниковой связи выстраивает наземную инфраструктуру своей сети на определенной технологической платформе, выпускаемой компаниями-производителями наземного оборудования для спутниковой связи.

4. Сферы применения спутниковой связи:

  • Магистральная спутниковая связь: Изначально возникновение спутниковой связи было продиктовано потребностями передачи больших объёмов информации. С течением времени доля передачи речи в общем объёме магистрального трафика постоянно снижалась, уступая место передаче данных. С развитием волоконно-оптических сетей последние начали вытеснять спутниковую связь с рынка магистральной связи.
  • Системы VSAT : системы VSAT (Very Small Aperture Terminal - терминал с очень маленькой апертурой антенны) предоставляют услуги спутниковой связи клиентам (как правило, небольшим организациям), которым не требуется высокая пропускная способность канала. Скорость передачи данных для VSAT-терминала обычно не превышает 2048 кбит/с. Слова «очень маленькая апертура» относятся к размерам антенн терминалов по сравнению с размерами более старых антенн магистральных систем связи. VSAT-терминалы, работающие в C-диапазоне, обычно используют антенны диаметром 1,8-2,4 м, в Ku-диапазоне - 0,75-1,8 м. В системах VSAT применяется технология предоставления каналов по требованию.
  • Системы подвижной спутниковой связи : особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала.

4.1.Принципы организации спутниковой связи VSAT:

Основной элемент спутниковой сети VSAT - ЦУС. Именно Центр Управления Сетью обеспечивает доступ клиентского оборудования с сети интернет, телефонной сети общего пользования, другим терминалам сети VSAT, реализует обмен трафиком внутри корпоративной сети клиента. ЦУС имеет широкополосное подключение к магистральным каналам связи, предоставляемым магистральными операторами и обеспечивает передачу информации от удаленного VSAT-терминала во внешний мир.

4.2.Принципы организации подвижной спутниковой связи:

Для того, чтобы мощность сигнала, достигающего мобильного спутникового приемника, была достаточной, применяют одно из двух решений:

  • Спутники располагаются на геостационарной орбите. Поскольку эта орбита удалена от Земли на расстояние 35786 км, на спутник требуется установить мощный передатчик.
  • Множество спутников располагается на наклонных или полярных орбитах. При этом требуемая мощность передатчика не так высока, и стоимость вывода спутника на орбиту ниже. Однако такой подход требует не только большого числа спутников, но и разветвленной сети наземных коммутаторов.
  • Оборудование клиента (мобильные спутниковые терминалы, спутниковые телефоны) взаимодействует с внешним миром или друг с другом посредством спутника-ретранслятора и станций сопряжения оператора услуг мобильной спутниковой связи, обеспечивающих подключение к внешним наземным каналам связи (телефонной сети общего пользования, сети интернет и пр.)

5. Технологии, используемые в спутниковой связи

М ногократное использование частот в спутниковой связи. Поскольку радиочастоты являются ограниченным ресурсом, необходимо обеспечить возможность использования одних и тех же частот разными земными станциями. Сделать это можно двумя способами:

  • пространственное разделение - каждая антенна спутника принимает сигнал только с определенного района, при этом разные районы могут использовать одни и те же частоты.
  • поляризационное разделение - различные антенны принимают и передают сигнал во взаимно перпендикулярных плоскостях поляризации, при этом одни и те же частоты могут применяться два раза (для каждой из плоскостей).

Ч астотные диапазоны.

Выбор частоты для передачи данных от земной станции к спутнику и от спутника к земной станции не является произвольным. От частоты зависит, например, поглощение радиоволн в атмосфере, а также необходимые размеры передающей и приемной антенн. Частоты, на которых происходит передача от земной станции к спутнику, отличаются от частот, используемых для передачи от спутника к земной станции (как правило, первые выше). Частоты, используемые в спутниковой связи, разделяют на диапазоны, обозначаемые буквами:

Название диапазона

Частоты

Применение

Подвижная спутниковая связь

Подвижная спутниковая связь

4 ГГц, 6 ГГц

Фиксированная спутниковая связь

Для спутниковой связи в этом диапазоне частоты не определены. Для приложений радиолокации указан диапазон 8-12 ГГц.

Фиксированная спутниковая связь (для военных целей)

11 ГГц, 12 ГГц, 14 ГГц

Фиксированная спутниковая связь, спутниковое вещание

Фиксированная спутниковая связь, межспутниковая связь

Ku-диапазон позволяет производить прием сравнительно небольшими антеннами, и поэтому используется в спутниковом телевидении (DVB), несмотря на то, что в этом диапазоне погодные условия оказывают существенное влияние на качество передачи. Для передачи данных крупными пользователями (организациями) часто применяется C-диапазон. Это обеспечивает более высокое качество приема, но требует довольно больших размеров антенны.

М одуляция и помехоустойчивое кодирование

Особенностью спутниковых систем связи является необходимость работать в условиях сравнительно низкого отношения сигнал/шум, вызванного несколькими факторами:

  • значительной удаленностью приемника от передатчика,
  • ограниченной мощностью спутника

Спутниковая связь плохо подходит для передачи аналоговых сигналов. Поэтому для передачи речи её предварительно оцифровывают, используя импульсно-кодовую модуляцию.
Для передачи цифровых данных по спутниковому каналу связи они должны быть сначала преобразованы в радиосигнал, занимающий определенный частотный диапазон. Для этого применяется модуляция (цифровая модуляция называется также манипуляцией).

Из-за низкой мощности сигнала возникает необходимость в системах исправления ошибок. Для этого применяются различные схемы помехоустойчивого кодирования, чаще всего различные варианты сверточных кодов, а также турбо-коды.

6. История создания спутниковых систем связи

Идея создания на Земле глобальных систем спутниковой связи была выдвинута в 1945 г. Артуром Кларком , ставшим впоследствии знаменитым писателем-фантастом. Реализация этой идеи стала возможной только через 12 лет после того, как появились баллистические ракеты, с помощью которых 4 октября 1957 г. на орбиту был запущен первый искусственный спутник Земли (ИСЗ). Для контроля за полетом ИСЗ на нем был помещен маленький радиопередатчик - маяк, работающий в диапазоне 27 МГц . Через несколько лет 12 апреля 1961 г . впервые в мире на советском космическом корабле "Восток" Ю.А. Гагарин совершил исторический облет Земли. При этом космонавт имел регулярную связь с Землей по радио. Так началась систематическая работа по изучению и использованию космического пространства для решения различных мирных задач.

Создание космической техники сделало возможным развитие очень эффективных систем дальней радиосвязи и вещания. В США начались интенсивные работы по созданию связных спутников. Такие работы начали разворачиваться и в нашей стране. Ее огромная территория и слабое развитие связи, особенно в малонаселенных восточных районах, где создание сетей связи с помощью других технических средств (РРЛ, кабельные линии и др.) сопряжено с большими затратами, делало этот новый вид связи весьма перспективным.

У истоков создания отечественных спутниковых радиосистем стояли выдающиеся отечественные ученые и инженеры, возглавлявшие крупные научные центры: М.Ф. Решетнев, М.Р. Капланов, Н.И. Калашников, Л.Я. Кантор

Основные задачи, ставящиеся перед учеными, состояли в следующем:

Разработка спутниковых ретрансляторов телевизионного вещания и связи ("Экран", "Радуга", "Галс"), с 1969 г. спутниковые ретрансляторы разрабатывались в отдельной лаборатории, возглавляемой М.В. Бродским ;

Создание системных проектов построения спутниковой связи и вещания;

Разработка аппаратуры земных станций (ЗС) спутниковой связи: модуляторов, порогопонижающих демодуляторов ЧМ (частотной модуляции) сигналов, приемных и передающих устройств и др.;

Проведение комплексных работ по оснащению оборудованием станций спутниковой связи и вещания;

Разработка теории следящих ЧМ демодуляторов со сниженным шумовым порогом, методов многостанционного доступа, методов модуляции и помехоустойчивого кодирования;

Разработка нормативно-технической документации на каналы, тракты телевизионного и связного оборудования спутниковых систем;

Разработка систем управления и контроля ЗС и сетями спутниковой связи и вещания.

Специалистами НИИР были созданы многие национальные спутниковые системы связи и вещания, находящиеся в эксплуатации и поныне . Приемо-передающее наземное и бортовое оборудование этих систем также было разработано в НИИР. Помимо оборудования специалисты института предложили методики проектирования как самих спутниковых систем, так и отдельных, входящих в их состав устройств. Опыт проектирования спутниковых систем связи специалистов НИИР отражен в многочисленных научных публикациях и монографиях.

6.1. Первые спутниковые линии связи и вещания через ИСЗ "Молния-1"

Первые эксперименты по спутниковой связи путем отражения радиоволн от американского отражающего спутника "Эхо" и Луны, используемых в качестве пассивных ретрансляторов, проводились специалистами НИИР в 1964 г . Радиотелескопом в обсерватории в поселке Зименки Горьковской области были приняты телеграфные сообщения и простой рисунок из английской обсерватории "Джодрелл Бэнк".

Этот эксперимент доказал возможность успешного использования космических объектов для организации связи на Земле.

В лаборатории спутниковой связи были подготовлены несколько системных проектов, а затем она приняла участие в разработке первой отечественной системы спутниковой связи "Молния-1" в диапазоне частот ниже 1 ГГц. Головной организацией по созданию этой системы был Московский научно-исследовательский институт радиосвязи (МНИИРС). Главным конструктором системы "Молния-1" является М.Р. Капланов - заместитель руководителя МНИИРС.

В 60-е годы в НИИР велась разработка приемо-передающего комплекса тропосферной радиорелейной системы "Горизонт", также работающей в диапазоне частот ниже 1 ГГц. Этот комплекс был модифицирован и созданная аппаратура, названная "Горизонт-К", использовалась для оснащения первой спутниковой линии связи "Молния-1", связавшей Москву и Владивосток. Эта линия предназначалась для передачи ТВ-программы или группового спектра 60 телефонных каналов. При участии специалистов НИИР в этих городах были оборудованы две земные станции (ЗС). В МНИИРС был разработан бортовой ретранслятор первого искусственного спутника связи "Молния-1", успешный запуск которого состоялся 23 апреля 1965 г . Он был выведен на высокоэллиптическую орбиту с периодом обращения вокруг Земли 12 ч. Такая орбита была удобна для обслуживания территории СССР, рас положенной в северных широтах, так как в течение восьми часов на каждом витке ИСЗ был виден с любой точки страны. Кроме того, запуск на такую орбиту с нашей территории осуществляется с меньшими затратами энергии, чем на геостационарную. Орбита ИСЗ "Молния-1" сохранила свое значение до сих пор и используется, несмотря на преобладающее развитие геостационарных ИСЗ.

6.2. Первая в мире спутниковая система "Орбита" для распределения ТВ-программ

После завершения исследований технических возможностей ИСЗ "Молния-1" специалистами НИИР Н.В. Талызиным и Л.Я. Кантором было предложено решить проблему подачи ТВ-программ центрального телевидения в восточные районы страны путем создания первой в мире системы спутникового вещания "Орбита" в диапазоне 1 ГГц на базе аппаратуры "Горизонт-К".

В 1965-1967 гг. в рекордно короткие сроки в восточных районах нашей страны было одновременно сооружено и введено в действие 20 земных станций "Орбита" и новая центральная передающая станция "Резерв". Система "Орбита" стала первой в мире циркулярной, телевизионной, распределительной спутниковой системой, в которой наиболее эффективно использованы возможности спутниковой связи.

Следует отметить, что диапазон, в котором работала новая система "Орбита" 800-1000 МГц, не соответствовал тому, который был распределен в соответствии с Регламентом радиосвязи для фиксированной спутниковой службы. Работа по переводу системы "Орбита" в С-диапазон 6/4 ГГц была выполнена специалистами НИИР в период 1970-1972 гг. Станция, функционирующая в новом диапазоне частот, получила название "Орбита-2". Для нее был создан полный комплекс аппаратуры для работы в международном диапазоне частот - на участке Земля-Космос - в диапазоне 6 ГГц, на участке Космос-Земля - в диапазоне 4 ГГц. Под руководством В.М. Цирлина была разработана система наведения и автосопровождения антенн с программным устройством. В этой системе использовались экстремальный автомат и метод конического сканирования.

Станции "Орбита-2" начали внедряться с 1972 г ., а к концу 1986 г . их было построено около 100. Многие из них и в настоящее время являются действующими приемо-передающими станциями.

В дальнейшем для работы сети "Орбита-2" был создан и выведен на орбиту первый советский геостационарный ИСЗ "Радуга", многоствольный бортовой ретранслятор которого создавался в НИИР (руководитель работы А.Д. Фортушенко и ее участники М.В. Бродский, А.И. Островский, Ю.М. Фомин и др.) При этом были созданы и освоены технология изготовления и методы наземной обработки космических изделий.

Для системы "Орбита-2" были разработаны новые передающие устройства "Градиент" (И.Э. Мач, М.З. Цейтлин и др.), а также параметрические усилители (А.В. Соколов, Э.Л. Ратбиль, B.C. Санин, В.М. Крылов) и устройства приема сигналов (В.И. Дьячков, В.М. Доро феев, Ю.А. Афанасьев, В.А. Полухин и др.).

6.3. Первая в мире система непосредственного ТВ-вещания "Экран"

Широкое развитие системы "Орбита", как средства подачи ТВ-программ, в конце 70-х годов стало экономически неоправданным из-за большой стоимости ЗС, делающей нецелесообразной ее установку в пункте с населением менее 100-200 тыс. человек. Более эффективной оказалась система "Экран", работающая в диапазоне частот ниже 1 ГГц и имеющая большую мощность передатчика бортового ретранслятора(до 300 Вт). Целью создания этой системы было охват ТВ-вещанием малонаселенных пунктов в районах Сибири, Крайнего Севера и части Дальнего Востока. Для ее реализации были выделены частоты 714 и 754 МГц, на которых было возможно создать достаточно простые и дешевые приемные устройства. Система "Экран" стала фактически первой в мире системой непосредственного спутникового вещания.

Приемные установки этой системы должны были быть рентабельными как для обслуживания небольших населенных пунктов, так и для индивидуального приема ТВ-программ.

Первый спутник системы "Экран" был запущен 26 октября 1976 г . на геостационарную орбиту в точку 99° в.д. Несколько позднее в Красноярске были выпущены станции коллективного приема "Экран-КР-1" и "Экран-КР-10" с мощностью выходного телевизионного передатчика 1 и 10 Вт. Земная станция, передающая сигналы на ИСЗ "Экран", имела антенну с диаметром зеркала 12 м, она была оборудована передатчиком "Градиент" мощностью 5 кВт, работающим в диапазоне 6 ГГц. Приемные установки этой системы, разработанные специалистами НИИР, были наиболее простыми и дешевыми приемными станциями из всех, реализованных в те годы. К концу 1987 г. число установленных станций "Экран" достигло 4500 шт.

6.4.Системы распределения ТВ-программ "Москва" и "Москва-Глобальная"

Дальнейший прогресс в развитии систем спутникового ТВ-вещания в нашей стране связан с созданием системы "Москва", в которой технически устаревшие ЗС системы "Орбита, были заменены на малые ЗС. Разработка малых ЗС началась в 1974 г. по инициативе Н.В. Талызина и Л.Я. Кантора.

Для системы "Москва" на ИСЗ "Горизонт" был предусмотрен ствол повышенной мощности, работающий в диапазоне 4 ГГц на узконаправленную антенну. Энергетические соотношения в системе были выбраны таким образом, что обеспечивали применение на приемной ЗС небольшой параболической антенны с диаметром зеркала 2,5 м без автоматического наведения. Принципиальной особенностью системы "Москва" являлось строгое соблюдение норм на спектральную плотность потока мощности у поверхности Земли, установленных Регламентом ради связи для систем фиксированной службы . Это позволяло использовать эту систему для ТВ-вещания на всей территории СССР. Система обеспечивала прием с высоким качеством центральной ТВ-программы и программы радиовещания. Впоследствии в системе был создан еще один канал, предназначенный для передачи газетных полос.

Эти станции получили также широкое распространение в отечественных учреждениях, расположенных за рубежом (в Европе, на севере Африки и ряде других территорий), что дало возможность нашим гражданам за рубежом принимать отечественные программы. При создании системы "Москва" был использован ряд изобретений и оригинальных решений, позволивших усовершенствовать как построение самой системы, так и ее аппаратурные комплексы. Эта система послужила прототипом для многих спутниковых систем, созданных позже в США и Западной Европе, в которых для подачи программ ТВ на ЗС малого размера и умеренной стоимости использовались ИСЗ средней мощности, работающие в диапазоне фиксированной спутниковой службы.

В течение 1986-1988 гг. была проведена разработка специальной системы "Москва-Глобальная" с малыми ЗС, предназначенной для подачи центральных ТВ-программ в отечественные представительства за рубежом, а также для передачи небольшого объема дискретной информации. Эта система также находится в эксплуатации. В ней предусмотрена организация одного ТВ-канала, трех каналов для передачи дискретной информации со скоростью 4800 бит/с и двух каналов со скоростью 2400 бит/с. Каналы передачи дискретной информации использовались в интересах Комитета по телевидению и радиовещанию, ТАСС и АПН (Агентство политических новостей). Для охвата практически всей территории Земного шара в ней используются два спутника, расположенные на геостационарной орбите на 11° з.д. и 96° в.д. Приемные станции имеют зеркало диаметром 4 м, аппаратура может располагаться как в специальном контейнере, так и в помещении.

6.5. Система спутникового ТВ-вещания в диапазоне 12 ГГц

С 1976 г . в НИИР начались работы по созданию принципиально новой в те годы системы спутникового телевидения в выделенном по международному плану для такого спутникового ТВ-вещания диапазоне частот 12 ГГц (СТВ-12), которая не имела бы ограничений по излучаемой мощности, присущих системам "Экран" и "Москва" и могла бы обеспечить охват всей территории нашей страны многопрограммным ТВ-вещанием, а также обмен программами и решение проблемы республиканского вещания. В создании этой системы НИИР являлся головной организацией.

Специалисты института провели исследования, определившие оптимальные параметры данной системы, и разработали многоствольные бортовые ретрансляторы и оборудование передающей и приемной ЗС. На первом этапе развития этой системы использовался отечественный спутник "Галс", сигналы передавались в аналоговом виде, использовалось импортное приемное оборудование. Позже был осуществлен переход на цифровое оборудование на базе иностранного спутника, а также передающего и приемного оборудования.

6.6. Создание системы "Интерспутник"

В 1967 г. началось развитие международного сотрудничества социалистических стран в области спутниковой связи. Целью его было создание международной спутниковой системы "Интерспутник", предназначенной для удовлетворения потребностей Болгарии, Венгрии, Германии, Монголии, Польши, Румынии, СССР и Чехословакии в телефонной связи, передаче данных и обмене ТВ-программами. В 1969 г. были разработаны проект этой системы, юридические основы организации "Интерспутник", а в 1971 г. подписано соглашение о ее создании.

Система "Интерспутник" стала второй в мире между народной системой спутниковой связи (после системы "Интелсат"). Специалисты НИИР разработали проекты ЗС, которые при содействии СССР были построены во многих странах социалистического содружества. Первая ЗС за рубежом была создана на Кубе, а вторая - в Чехословакии. Всего НИИР поставил за рубеж более десяти ЗС для приема программ ТВ, ЗВ и специального назначения.

Вначале в "Интерспутнике" использовался ИСЗ типа "Молния-3" на высокоэллиптической орбите, а с 1978 г. -два многоствольных геостационарных спутника типа "Горизонт" с точками стояния 14° з.д. и 53° (а затем 80°) в.д. На ЗС первоначально был установлен передатчик "Градиент-К" и приемный комплекс "Орбита-2".

Все системные и технические решения по созданию системы "Интерспутник", а также аппаратура ЗС создавались специалистами НИИР совместно с опытным заводом НИИР "Промсвязьрадио" и организациями-соисполнителями. Система "Интерспутник" находится в эксплуатации и сегодня, арендуя стволы космической группировки РФ, а также используя свой геостационарный спутник LMI-1, находящийся на позиции 75° в.д. Работы проводились в кооперации с ПО "Искра" (Красноярск), Московским и Подольским радиотехническими заводами.

Руководителем работ был С.В. Бородич .

6.7. Создание спутниковой линии правительственной связи

В 1972 г . было заключено межправительственное соглашение между СССР и США о создании прямой линии правительственной связи (ЛПС) между главами государств на случай чрезвычайных обстоятельств. Выполнение этого важного правительственного соглашения было поручено специалистам НИИР. Главным конструктором разработки ЛПС стал В.Л. Быков , а ответственными исполнителями - И.А. Ястребцов, А.Н. Воробьев.

На территории СССР были созданы две ЗС: одна (в Дубне под Москвой), вторая (в Золочеве под Львовом). Ввод ЛПС в эксплуатацию состоялся в 1975 г . Она действует через ЗС "Дубна" до настоящего времени. Это был первый опыт работы по созданию отечественными специалистами спутниковой линии в международной системе "Интелсат".

6.8. В заключении…

В 1960-1980 гг. специалисты НИИР решали весьма важные для нашего государства и сложные в техническом отношении проблемы создания национальных систем спутниковой связи и вещания.

· Были созданы системы распределения ТВ-программ на обширной территории нашей страны, в том числе - непосредственного спутникового телевещания. Многие системы, созданные в НИИР, были первыми в мире: "Орбита", "Экран", "Москва" и др. Оборудование наземной части этих систем, а также бортовое оборудование - также разработка НИИР, оно производилось отечественной промышленностью.

· Спутниковые системы связи и вещания позволили удовлетворить потребности десятков миллионов граждан нашей страны, особенно тех, кто проживали в малонаселенных районах Западной Сибири и Дальнего Востока. С созданием спутниковых систем в этих регионах у граждан впервые появилась возможность принимать программы центрального телевидения в реальном времени.

· Внедрение спутниковых систем имело исключительно важное значение для экономического и социального развития как труднодоступных регионов Сибири и Дальнего Востока, так и всей страны.

· Население Сахалина, Камчатки, Хабаровского края и многих других отдаленных территорий получило доступ к телефонной сети общего пользования.

· Ученые НИИР выполнили оригинальные научные исследования, направленные на создание методик расчета разного рода устройств, применяемых в системах спутниковой связи. Ими также была создана методологии проектирования систем спутниковой связи и написан ряд фундаментальных монографий и научных статей по проблемам спутниковой связи.

Вывод

Современные организации характеризуются большим объемом различной информации, в основном электронной и телекоммуникационной, которая проходит через них каждый день. Поэтому важно иметь высококачественный выход на коммутационные узлы, которые обеспечивают выход на все важные коммуникационные линии. В России, где расстояния между населенными пунктами огромное, а качество наземных линий оставляет желать лучшего, оптимальным решением этого вопроса является применение систем спутниковой связи (ССС).

Изначально ССС использовались для передачи ТВ-сигнала. Наша страна характеризуется обширной территорией, которую нужно охватить средствами коммуникации. Сделать это стало проще после появления спутниковой связи, а именно системы Орбита-2. Позже появились спутниковые телефоны, главным преимуществом которых является независимость от наличия каких-либо местных телефонных сетей. Качественная телефонная связь доступна из практически любой точки земного шара.

В рамках президентской программы «Универсальная услуга связи» в каждом населенном пункте были установлены таксофоны, в особо отдаленных районах были использованы именно спутниковые таксофоны.

Согласно федеральной целевой программы «Развитие телерадиовещания в Российской Федерации на 2009-2015 годы» происходит внедрение цифрового вещания в России. Программа полностью профинансирована, в том числе средства пойдут и на создание многофункциональных спутников.

Список используемой литературы

1. Интернет-ресурс «История спутниковой связи» http://sviazist.nnov.ru/modules/myarticles/article.php?storyid=1026

2.Интернет-ресурс «Принципы организации спутниковой связи» http://vsatinfo.ru/index.php?option=com_sobi2&catid=30&Itemid=0

3. Интернет ресурс «Свободная энциклопедия»

http://ru.wikipedia.org


Рецензия

на реферат «Спутниковые системы связи»

Ученицы 11 кл. МОУ Парабельской гимназии

Горошкиной Ксении

Тема реферата раскрыта полностью. Материал всех разделов интересный, изложен доступно и чётко. Хорошие иллюстрации. Структура реферата соблюдена. Работу можно использовать как учебное пособие для учащихся.

Оценка «ОТЛИЧНО»

Эксперт: Борисов А. В. учитель физики