Компьютерные уроки

Лекция: Арифметические и логические основы работы компьютера. Арифметические основы компьютера Арифметические основы компьютера кратко

а) Логические основы работы компьютера

Алгебра логики - это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.

Алгебра логики возникла в середине ХIХ века в трудах английского математика Джорджа Буля . Ее создание представляло собой попытку решать традиционные логические задачи алгебраическими методами.

Логическое высказывание - это любoе повествовательное пpедлoжение, в oтнoшении кoтopoгo мoжно oднoзначнo сказать, истиннo oнo или лoжнo.

Так, например, предложение "6 - четное число " следует считать высказыванием, так как оно истинное. Предложение "Рим - столица Франции " тоже высказывание, так как оно ложное.

Разумеется, не всякое предложение является логическим высказыванием . Высказываниями не являются, например, предложения "ученик десятого класса " и "информатика - интересный предмет ". Первое предложение ничего не утверждает об ученике, а второе использует слишком неопределённое понятие "интересный предмет ". Вопросительные и восклицательные предложения также не являются высказываниями, поскольку говорить об их истинности или ложности не имеет смысла.

Предложения типа "в городе A более миллиона жителей ", "у него голубые глаза " не являются высказываниями, так как для выяснения их истинности или ложности нужны дополнительные сведения: о каком конкретно городе или человеке идет речь. Такие предложения называются высказывательными формами .

Алгебра логики рассматривает любое высказывание только с одной точки зрения - является ли оно истинным или ложным. Заметим, что зачастую трудно установить истинность высказывания . Так, например, высказывание "площадь поверхности Индийского океана равна 75 млн кв. км " в одной ситуации можно посчитать ложным, а в другой - истинным. Ложным - так как указанное значение неточное и вообще не является постоянным. Истинным - если рассматривать его как некоторое приближение, приемлемое на практике.

Употребляемые в обычной речи слова и словосочетания "не", "и", "или", "если... , то", "тогда и только тогда" и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.

Bысказывания, образованные из других высказываний с помощью логических связок, называются составными. Высказывания, не являющиеся составными, называются элементарными.

Так, например, из элементарных высказываний "Петров - врач ", "Петров - шахматист " при помощи связки "и " можно получить составное высказывание "Петров - врач и шахматист ", понимаемое как "Петров - врач, хорошо играющий в шахматы ".



При помощи связки "или " из этих же высказываний можно получить составное высказывание "Петров - врач или шахматист ", понимаемое в алгебре логики как "Петров или врач, или шахматист, или и врач и шахматист одновременно ".

Истинность или ложность получаемых таким образом составных высказываний зависит от истинности или ложности элементарных высказываний.

Чтобы обращаться к логическим высказываниям, им назначают имена. Пусть через А обозначено высказывание "Тимур поедет летом на море", а через В - высказывание "Тимур летом отправится в горы". Тогда составное высказывание "Тимур летом побывает и на море, и в горах" можно кратко записать как А и В . Здесь "и" - логическая связка, А, В - логические переменные, которые мoгут принимать только два значения - "истина" или "ложь", обозначаемые, соответственно, "1" и "0".

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение:

НЕ Операция, выражаемая словом "не", называется отрицанием и обозначается чертой над высказыванием (или знаком ). Высказывание истинно, когда A ложно, и ложно, когда A истинно. Пример. "Луна - спутник Земли " (А); "Луна - не спутник Земли " ().

И "и", называется конъюнкцией (лат. conjunctio - соединение) или логическим умножением и обозначается точкой " . " (может также обозначаться знаками или & ). Высказывание А. В истинно тогда и только тогда, когда оба высказывания А и В истинны. Например, высказывание "10 делится на 2 и 5 больше 3" истинно, а высказывания "10 делится на 2 и 5 не больше 3", "10 не делится на 2 и 5 больше 3", "10 не делится на 2 и 5 не больше 3" - ложны.

ИЛИ Операция, выражаемая связкой "или" (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio - разделение) или логическим сложением и обозначается знаком v (или плюсом). Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны. Например, высказывание "10 не делится на 2 или 5 не больше 3" ложно, а высказывания "10 делится на 2 или 5 больше 3", "10 делится на 2 или 5 не больше 3", "10 не делится на 2 или 5 больше 3" - истинны.

ЕСЛИ-ТО Операция, выражаемая связками "если..., то", "из... следует", "... влечет...", называется импликацией (лат. implico - тесно связаны) и обозначается знаком . Высказывание ложно тогда и только тогда, когда А истинно, а В ложно.

Математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера, поскольку основной системой счисления в компьютере является двоичная, в которой используются цифры 1 и 0, а значений логических переменных тоже два: “1” и “0”.

Из этого следует два вывода:

1. одни и те же устройства компьютера могут применяться для обработки и хранения как числовой информации, представленной в двоичной системе счисления, так и логических переменных;

на этапе конструирования аппаратных средств алгебра логики позволяет значительно упростить логические функции, описывающие функционирование схем компьютера, и, следовательно, уменьшить число элементарных логических элементов, из десятков тысяч которых состоят основные узлы компьютера.

Логический элемент компьютера - это часть электронной логичеcкой схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и другие (называемые также вентилями ), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Чтобы представить два логических состояния - “1” и “0” в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению “истина” (“1”), а низкий - значению “ложь” (“0”).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

НОУ « ВОЛГОГРАДСКИЙ ИНСТИТУТ БИЗНЕСА»

кафедра математики и естественных наук

КОНТРОЛЬНАЯ РАБОТА ПО ИНФОРМАТИКЕ

АРИФМЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ ЭВМ

Выполнил: студент группы 1- МТ71з

ШАЛИМОВ АЛЕКСЕЙ ЭДУАРДОВИЧ

Проверил:

МАКАРОВА МАРИЯ АЛЕКСАНДРОВНА

ВОЛГОГРАД 2008

Введение

1. Представление информации в компьютере

2. Системы счисления

3. Перевод числа из одной системы счисление в другую

4. Арифметические операции в позиционных системах счисления

Заключение

Список литературы

Введение

Качественно новое обслуживание информационных процессов, пронизывающих различные сферы человеческой деятельности тесным образом связано с использованием современной электронно-вычислительной техники.

Термин компьютер, так прочно вошедший в русский язык, в переводе означает «вычислитель», т.е. устройство для осуществления вычислений.

Потребность в автоматизации вычислений или, как сейчас говорят - обработки данных, возникла давно. Уже более полутора тысяч лет назад для облегчения вычислений стали использовать счеты.

Но только в 1642 году Блез Паскаль изобрел устройство для механического сложения чисел, а в 1673 году Г. В. Лейбниц сконструировал арифмометр, позволявший механическим способом выполнять четыре арифметических действия, И хотя, начиная с XIX века, арифмометры получили широкое распространение, у них был один существенный недостаток: расчеты производились очень медленно. Причина проста - выбор выполняемых действий и запись результатов при осуществлении расчетов производилась человеком, скорость работы которого весьма ограничена.

Для устранения этого недостатка английский математик Ч. Бэббидж попытался построить универсальное вычислительное устройство, выполняющее вычисления без участия человека. Для этого оно должно было уметь исполнять программы, вводимые с помощью перфокарт (прямоугольных пластин из плотной бумаги с информацией, наносимой при помощи отверстий). Бэббидж не смог довести до конца работу по созданию своей Аналитической машины: ее устройство оказалось слишком сложным для технического оснащения промышленности первой половины XIX века. Однако идеи, заложенные в основу этого устройства, позволили американцу Г. Эйкену в 1943 году построить на одном из предприятий фирмы IBM машину, функционирующую на электромеханических роле и получившую название «Марк-1».

К этому времени потребность в автоматизации обработки данных (в первую очередь, для военных нужд - баллистики, криптографии и т.д.) стала настолько ощутимой, что над созданием подобных машин одновременно работало несколько групп исследователей в разных странах мира. Начиная с 1943 года, группа специалистов под руководством Д. Мочли и П. Экерта в США занималась конструированием более современной вычислительной машины на основе электронных ламп, которая могла бы хранить выполняемую программу в своей памяти. Для ускорения работы в 1945 году к этому проекту был привлечен знаменитый математик Джон фон Нейман. В результате его участия был подготовлен доклад, содержавший целый ряд принципов, на основе которых и должна была функционировать разрабатываемая машина.

Первый компьютер, в котором в полной мере реализовались принципы фон Неймана был построен в 1949 году английским исследователем М. Уилксом. С той поры прошло более 50 лет, и тем не менее, большинство современных компьютеров в той или ином степени соответствуют принципам, изложенным фон Нейманом.

В своей работе Д. Фон Нейман описал, как должен быть устроен компьютер для того, чтобы он был универсальным и эффективным устройством обработки информации (рис.1). В состав такого компьютера должны входить:

♦ арифметико-логическое устройство, выполняющее арифметические и логические операции;

♦устройство управления, организующее процесс выполнения программ и синхронизирующее работу остальных устройств компьютера;

♦запоминающее устройство (память), предназначенное для хранения выполняемых программ и обрабатываемых данных;

♦внешние устройства, предназначенные для ввода и вывода информации.

1 Представление информации в компьютере

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся остальная информация (например, звук, видео, графические изображения и т.д.) перед обработкой на компьютере должна быть преобразована в числовую форму. Так, чтобы привести к цифровому виду (оцифровать) музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. Затем, с помощью специальной компьютерной программы осуществляются необходимые преобразования полученных данных: наложение звуков от различных источников друг на друга (эффект оркестра), изменение тональности отдельных звуков и т.п. После чего, окончательный результат преобразуется обратно в звуковую форму.

2. Системы счисления

Система счисления - это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Двоичная система счисления. В этой системе всего две цифры - 0 и 1. Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т.д. Самая правая цифра числа показывает число единиц, следующая цифра - число двоек, следующая - число четверок и т.д. Двоичная система счисления позволяет закодировать любое натуральное число - представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что легко реализуется технически.

Десятичная система счисления. Пришла в Европу из Индии, где она появилась не позднее VI века н.э. В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, но информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция). В десятичной системе счисления особую роль играют число 10 и его степени: 10, 100, 1000 и т.д. Самая правая цифра числа показывает число единиц, вторая справа - число десятков, следующая - число сотен и т.д.

Восьмеричная система счисления. В этой системе счисления 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Цифра 1, указанная в самом младшем разряде, означает - как и в десятичном числе - просто единицу. Та же цифра 1 в следующем разряде означает 8, в следующем 64 и т.д. Число 100 (восьмеричное) есть не что иное, как 64 (десятичное). Чтобы перевести в двоичную систему, например, число 611 (восьмеричное), надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр). Легко догадаться, что для перевода многозначного двоичного числа в восьмеричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.

Шестнадцатеричная система счисления. Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: A, B, C, D, E, F. Цифра 1, записанная в самом младшем разряде, означат просто единицу. Та же цифра 1 в следующем - 16 (десятичное), в следующем - 256 (десятичное) и т.д. Цифра F, указанная в самом младшем разряде, означает 15 (десятичное). Перевод из шестнадцатеричной системы в двоичную и обратно производится аналогочно тому, как это делается для восьмеричной системы.

Существуют позиционные и непозиционные системы счисления. В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 * 102 + 5 * 101 + 7 * 100+ 7 * 10-1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления - это количество различных знаков или символов, используемых для изображения цифр в данной системе. За основание системы можно принять любое натуральное число - два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

an-1 qn-1 + an-2 qn-2 +… + a1 q1 + a0q0+ a-1 q-1 +… + a-m q-m ,

где ai – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

В любой системе счисления для представления чисел выбираются некоторые символы (слова или знаки), называемые базисными числами, а все остальные числа получаются в результате каких-либо операций из базисных чисел данной системы счисления.

Системы счисления различаются выбором базисных чисел и правилами образования из них остальных чисел.

Единицей информации в компьютере является один бит (bit), т.е. двоичный разряд, который может принимать значение 0 или 1. Бит - это фундаментальная единица, определяющая количество информации, подвергаемое обработке или переносимое из одного места в другое. Поскольку биты записываются нулями и единицами, их последовательные совокупности позволяют кодировать двоичные числа (binarynumbers) - значение в двоичной системе счисления.

В более привычной для человека десятичной системе счисления (по основанию 10) для представления чисел используется десять символов: 0, 1, 2, 3, 4,5,6,7,8и 9. Чтобы составить число, значение которого в десятичной системе счисления больше 9 (например, 27), комбинируют две цифры: при этом позиции символов имеют определенный смысл. Прогрессия значений, связанная с позицией цифры, возрастает, как показано на рис. 2., пропорционально степени основания.

Рис. 2. Пример представления числа в десятичной системе счисления

Десятичное число, состоящее хотя бы из двух цифр, является суммой различных степеней основания, умноженных на соответствующую цифру. Так, число 10 представляет собой сумму из одного десятка (101) и нуля единиц (100), а число 423 - сумму из четырех сотен (102), двух десятков (101) и трех единиц (100).

Рассмотренный метод представления чисел достаточно универсален и используется в других системах счисления, в которых основание отлично от десяти. Например, в системе с основанием 8 задействовано восемь символов: 0, 1, 2, 3, 4, 5, 6 и 7, а значимость каждой позиции возрастает пропорционально степени числа 8, как показано на рис.3.


Рис. 3. Пример предоставления числа в восьмеричной системе счисления.

Как уже отмечалось, компьютер способен обрабатывать информацию в двоичной системе счисления. В ней используются только два символа 0 и 1, а смещение символа на одну позицию влево увеличивает значение числа пропорционально степени основания 2. На рис. 4 показано восьмибитовое (1 байт) представление числа 58 в двоичной системе счисления.

Рис. 4. Пример представления числа в двоичной системе счисления.

3. Перевод числа из одной системы счисление в другую

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления. Эта система имеет ряд преимуществ перед другими системами:

· для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток - нет тока, намагничен - не намагничен и т.п.), а не, например, с десятью, - как в десятичной;

· представление информации посредством только двух состояний надежно и помехоустойчиво;

· возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;

· двоичная арифметика намного проще десятичной.

Недостаток двоичной системы - быстрый рост числа разрядов, необходимых для записи чисел. Являясь удобной для компьютеров, для человека двоичная система неудобна из-за ее громоздкости и непривычной записи.

Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.

Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 – соответственно, третья и четвертая степени числа 2).

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).

То есть, чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?

При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1. Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 7510 = 1 001 0112 = 1138 = 4B16 .

Как пеpевести пpавильную десятичную дpобь в любую другую позиционную систему счисления?

Пpи переводе правильной десятичной дpоби в систему счисления с основанием q необходимо сначала саму дробь, а затем дробные части всех последующих произведений последовательно умножать на q, отделяя после каждого умножения целую часть произведения. Число в новой системе счисления записывается как последовательность полученных целых частей произведения. Умножение производится до тех поp, пока дробная часть произведения не станет равной нулю. Это значит, что сделан точный пеpевод. В противном случае перевод осуществляется до заданной точности. Достаточно того количества цифp в pезультате, котоpое поместится в ячейку.

Пример: Перевести число 0,35 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 0,3510 = 0,010112 = 0,2638 = 0,5916 .

Как перевести число из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную?

При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.

4. Арифметические операции в позиционных системах счисления

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны - это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления.

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример: Сложим числа 15 и 6 в шестнадцатеричной системе счисления: F16 + 616 15 + 6 = 2110 = 101012 = 258 ;

Ответ: = 1516 .

Проверка. Преобразуем полученные суммы к десятичному виду:

101012 = 24 + 22 + 20= 16+4+1=21,

258 = 2*81 + 5*80= 16 + 5 = 21,

1516 = 1*161 + 5*160= 16+5 = 21.

Вычитание

Пример: Вычтем единицу из чисел 102, 108 и 1016

Вычтем единицу из чисел 1002, 1008 и 10016 .

Вычтем число 59,75 из числа 201,25.

Ответ: 201,2510 – 59,7510 = 141,510 = 10001101,12 = 215,48 = 8D,816 .

Проверка: Преобразуем полученные разности к десятичному виду:

10001101,12 = 27 + 23 + 22 + 20+ 2–1 = 141,5;

215,48 = 2*82 + 1*81 + 5*80+ 4*8–1 = 141,5;

8D,816 = 8*161 + D*160+ 8*16–1 = 141,5.

Умножение

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример: Перемножим числа 5 и 6.

Ответ: 5*6 = 3010 = 111102 = 368 .

111102 = 24 + 23 + 22 + 21 = 30; 368 = 3 81 + 6 80= 30.

Пример: Перемножим числа 115 и 51.

Ответ: 115*51 = 586510 = 10110111010012 = 133518 .

Проверка: Преобразуем полученные произведения к десятичному виду:

10110111010012 = 212 + 210 + 29 + 27 + 26 + 25 + 23 + 20= 5865;

133518 = 1*84 + 3*83 + 3*82 + 5*81 + 1*80= 5865.

Деление

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

Пример: Разделим число 30 на число 6.

Ответ: 30: 6 = 510 = 1012 = 58 .

Пример: Разделим число 5865 на число 115.

Восьмеричная: 133518:1638

Ответ: 5865: 115 = 5110 = 1100112 = 638 .

Проверка: Преобразуем полученные частные к десятичному виду:

1100112 = 25 + 24 + 21 + 20= 51; 638 = 6*81 + 3*80= 51.

Заключение

В структуру автоматизированной информационной системы входят несколько подсистем. Одной из таких подсистем является математическое и программное обеспечение, то есть совокупность математических методов, моделей, алгоритмов и программ для реализации целей и задач информационной системы, а также нормального функционирования комплекса технических средств.

Фундаментом науки о вычислительных машинах является конструктивная математика, в основе которой лежит математическая логика и теория алгоритмов с их однозначностью в оценке суждений и процедур вывода. Для описания элементов и узлов ЭВМ с самого начала использовалась математическая логика, а для описания компьютерных программ - теория алгоритмов.

Математическая логика - это дисциплина, изучающая технику математических доказательств. Отличие математических суждений от обычных разговорных высказываний состоит в том, что математические суждения всегда предполагают однозначную интерпретацию, в то время как наши обычные высказывания зачастую допускают многозначную трактовку.

Работа ЭВМ как автоматических устройств основана исключительно на математически строгих правилах выполнения команд, программ и интерпретации данных. Тем самым работа компьютеров допускает строгую однозначную проверку правильности своей работы в плане заложенных в них процедур и алгоритмов обработки информации.

С появлением самых первых компьютерных программ, имитирующих интеллектуальную деятельность людей, возникло понятие«искусственный интеллект» ивсе компьютерные программы, демонстрирующиеинтеллектуальное поведение, основаны на использовании определенного математического аппарата, опирающегося на законы математической логики и соответственно, имеющего арифметические основы. Без понимания этих законов и основ невозможно понимание принципов работы вычислительных машин вообще и систем искусственного интеллекта в частности.


Список литературы

1. Громов Ю. Ю., О. Г. Иванова, А. В. Лагутин. Информатика: Учебное пособие. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2002.

2. Каймин В.А. Информатика: Учебник. - М.: ИНФРА-М,2000.

3. Сергеева И.И., Мазулевская А.А., Тарасова Н.В. Информатика: учебник. – М.: ИД «Форум»: ИНФРА – М, 2007.

Изучение систем счисления, арифметических и логических операций очень важно для понимания того, как происходит обработка данных в вычислительных машинах.

Любой компьютер может быть представлен как арифметическая машина, реализующая алгоритмы путем выполнения арифметических действий. Эти арифметические действия производятся над числами, представленными в принятой для них системе счисления, в заданных форматах и с использованием специальных машинных кодов.

Изучение различных систем счисления, которые используются в компьютерах, и арифметических операций в них очень важно для понимания того, каким образом производится обработка числовых данных в вычислительных машинах.

Системой счисления (СС) называется способ изображения чисел с помощью ограниченного набора символов, имеющих определенные количественные значения. Система счисления образует совокупность правил и приемов представления чисел с помощью набора знаков (цифр).

Все системы счисления можно разделить на два класса: позиционные и непозиционные. Для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга знаков, называемых алфавитом системы счисления.

Системы счисления, в которых значение знака не зависит от того места, которое он занимает в числе, называются непозиционными. Наиболее известным примером непозиционной системы счисления является римская. В этой системе используется 7 знаков (I, V, X, L, С, D, М), которые соответствуют следующим величинам:

I(1) V(5) X(10) L(50) C(100) D(500) M(IOOO)

Примеры: III(три), LIХ(пятьдесят девять), DLV(пятьсот пятьдесят пять).

Недостатками непозиционных систем, из-за которых они представляют лишь исторический интерес, являются сложный способ записи чисел и громоздкие правила выполнения арифметических операций, хотя по традиции римскими числами часто пользуются при нумерации глав в книгах, веков в истории и т. п.

Во всех вычислительных машинах применяется позиционная система счисления. В позиционных СС каждая цифра числа имеет определенный вес, зависящий от позиции цифры в последовательности, изображающей число. Позиция цифры называется ее разрядом. Число знаков в позиционной системе счисления называется основанием системы счисления.

В позиционной системе счисления любое число можно представить в виде:

Основание системы счисления N показывает, во сколько раз “вес” i- го разряда больше (i – 1) разряда. Целая часть числа отделяется от дробной части точкой (запятой).

Пример 1. А 10 = 37,25. В соответствии с формулой (1) это число формируется из цифр с весами разрядов

Теоретически наиболее экономичной системой счисления является система счисления с основанием е = 2,71828…, находящимися между числами 2 и 3.


Во всех современных ЭВМ для представления числовой информации используется двоичная система счисления. Это обусловлено:

· более простой реализацией алгоритмов выполнения арифметических и логических операций;

· более надежной физической реализацией основных функций, так как они имеют всего два состояния (0 и 1);

· экономичностью аппаратурной реализации всех схем ЭВМ.

При N =2 число различных цифр, используемых для записи чисел, ограниченно множеством из двух цифр (нуль и единица). Кроме двоичной системы счисления широкое распространение получили и производные системы:

· двоичная - {0,1};

· десятичная, точнее двоично-десятичное представление десятичных чисел, - {0,1,2,…,9};

· шестнадцатеричная - {0,1,…,9,A,B,C,D,E,F}. Здесь шестнадцатеричная цифра А обозначает число 10, В – число 11,…, F – число 15;

· восьмеричная (от слова «восьмерик») - {0,1,2,3,4,5,6,7}. Она широко используется для специализированных ЭВМ.

Таблица 1 – Представление чисел в различных системах счисления

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 10 2 + 5 10 1 + 7 10 0 + 7 10 -1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

За основание системы можно принять любое натуральное число - два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

a n-1 q n-1 + a n-2 q n-2 + ... + a 1 q 1 + a 0 q 0 + a -1 q -1 + ... + a -m q -m ,

где a i – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

Например:

Как порождаются целые числа в позиционных системах счисления?

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры – 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 – замену её на 0.

Целые числа в любой системе счисления порождаются с помощью Правила счета :

Применяя это правило, запишем первые десять целых чисел

· в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001;

· в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100;

· в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14;

· восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11.

Какие системы счисления используют специалисты для общения с компьютером?

Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2 , а именно :

· двоичная (используются цифры 0, 1);

· восьмеричная (используются цифры 0, 1, ..., 7);

· шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел - от десяти до пятнадцати – в качестве цифр используются символы A, B, C, D, E, F).

Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:

10 - я 2 - я 8 - я 16 - я
10 - я 2 - я 8 - я 16 - я
A
B
C
D
E
F

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления.

Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 75 10 = 1 001 011 2 = 113 8 = 4B 16 .

Сложение

Таблицы сложения легко составить, используя Правило Счета.

Сложение в шестнадцатиричной системе

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления.

Пример 2. Сложим числа 15, 7 и 3.

Шестнадцатеричная: F 16 +7 16 +3 16 Ответ: 5+7+3 = 25 10 = 11001 2 = 31 8 = 19 16 . Проверка: 11001 2 = 2 4 + 2 3 + 2 0 = 16+8+1=25, 31 8 = 3*8 1 + 1*8 0 = 24 + 1 = 25, 19 16 = 1*16 1 + 9*16 0 = 16+9 = 25.

Пример 3. Сложим числа 141,5 и 59,75.

Ответ: 141,5 + 59,75 = 201,25 10 = 11001001,01 2 = 311,2 8 = C9,4 16

Проверка. Преобразуем полученные суммы к десятичному виду:
11001001,01 2 = 2 7 + 2 6 + 2 3 + 2 0 + 2 -2 = 201,25
311,2 8 = 3*8 2 + 1 8 1 + 1*8 0 + 2*8 -1 = 201,25
C9,4 16 = 12*16 1 + 9*16 0 + 4*16 -1 = 201,25

Вычитание

Пример 4. Вычтем единицу из чисел 10 2 , 10 8 и 10 16

Пример 5. Вычтем единицу из чисел 100 2 , 100 8 и 100 16 .

Пример 6. Вычтем число 59,75 из числа 201,25.

Ответ: 201,25 10 – 59,75 10 = 141,5 10 = 10001101,1 2 = 215,4 8 = 8D,8 16 .

Проверка. Преобразуем полученные разности к десятичному виду:
10001101,1 2 = 2 7 + 2 3 + 2 2 + 2 0 + 2 –1 = 141,5;
215,4 8 = 2*8 2 + 1*8 1 + 5*8 0 + 4*8 –1 = 141,5;
8D,8 16 = 8*16 1 + D*16 0 + 8*16 –1 = 141,5.

Умножение

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе Умножение в восьмеричной системе

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример 7. Перемножим числа 5 и 6.

Ответ: 5*6 = 30 10 = 11110 2 = 36 8 .


11110 2 = 2 4 + 2 3 + 2 2 + 2 1 = 30;
36 8 = 3 8 1 + 6 8 0 = 30.

Пример 8. Перемножим числа 115 и 51.

Ответ: 115*51 = 5865 10 = 1011011101001 2 = 13351 8 .

Проверка. Преобразуем полученные произведения к десятичному виду:
1011011101001 2 = 2 12 + 2 10 + 2 9 + 2 7 + 2 6 + 2 5 + 2 3 + 2 0 = 5865;
13351 8 = 1*8 4 + 3*8 3 + 3*8 2 + 5*8 1 + 1*8 0 = 5865.

Деление

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

Пример 9. Разделим число 30 на число 6.

Ответ: 30: 6 = 5 10 = 101 2 = 5 8 .

Пример 10. Разделим число 5865 на число 115.

Восьмеричная: 13351 8:163 8

Ответ: 5865: 115 = 51 10 = 110011 2 = 63 8 .


110011 2 = 2 5 + 2 4 + 2 1 + 2 0 = 51; 63 8 = 6*8 1 + 3*8 0 = 51.

Пример 11. Разделим число 35 на число 14.

Восьмеричная: 43 8: 16 8

Ответ: 35: 14 = 2,5 10 = 10,1 2 = 2,4 8 .

Проверка. Преобразуем полученные частные к десятичному виду:
10,1 2 = 2 1 + 2 -1 = 2,5;
2,4 8 = 2*8 0 + 4*8 -1 = 2,5.

Сложение и вычитание

При сложении обратных кодов чисел А и В имеют место четыре основных и два особых случая:

1. А и В положительные. При суммировании складываются все разряды, включая разряд знака. Так как знаковые разряды положительных слагаемых равны нулю, разряд знака суммы тоже равен нулю. Например:

Получен правильный результат.

Получен правильный результат в обратном коде. При переводе в прямой код биты цифровой части результата инвертируются: 1 0000111 = –7 10 .

Компьютер исправляет полученный первоначально неправильный результат (6 вместо 7) переносом единицы из знакового разряда в младший разряд суммы.

Полученный первоначально неправильный результат (обратный код числа –11 10 вместо обратного кода числа –10 10) компьютер исправляет переносом единицы из знакового разряда в младший разряд суммы.

При переводе результата в прямой код биты цифровой части числа инвертируются: 1 0001010 = –10 10 .

При сложении может возникнуть ситуация, когда старшие разряды результата операции не помещаются в отведенной для него области памяти. Такая ситуация называется переполнением разрядной сетки формата числа . Для обнаружения переполнения и оповещения о возникшей ошибке в компьютере используются специальные средства. Ниже приведены два возможных случая переполнения.

5. А и В положительные, сумма А+В больше, либо равна 2 n–1 , где n – количество разрядов формата чисел (для однобайтового формата n=8, 2 n–1 = 27 = 128). Например:

Семи разрядов цифровой части числового формата недостаточно для размещения восьмиразрядной суммы (162 10 = 10100010 2), поэтому старший разряд суммы оказывается в знаковом разряде. Это вызывает несовпадение знака суммы и знаков слагаемых, что является свидетельством переполнения разрядной сетки.

Здесь знак суммы тоже не совпадает со знаками слагаемых, что свидетельствует о переполнении разрядной сетки.

Все эти случаи имеют место и при сложении дополнительных кодов чисел:

1. А и В положительные. Здесь нет отличий от случая 1, рассмотренного для обратного кода.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

Получен правильный результат в дополнительном коде. При переводе в прямой код биты цифровой части результата инвертируются и к младшему разряду прибавляется единица: 1 0000110 + 1 = 1 0000111 = –7 10 .

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

Получен правильный результат. Единицу переноса из знакового разряда компьютер отбрасывает.

4. А и В отрицательные. Например:

Получен правильный результат в дополнительном коде. Единицу переноса из знакового разряда компьютер отбрасывает.

Случаи переполнения для дополнительных кодов рассматриваются по аналогии со случаями 5 и 6 для обратных кодов.

Сравнение рассмотренных форм кодирования целых чисел со знаком показывает:

· на преобразование отрицательного числа в обратный код компьютер затрачивает меньше времени, чем на преобразование в дополнительный код, так как последнее состоит из двух шагов - образования обратного кода и прибавления единицы к его младшему разряду;

· время выполнения сложения для дополнительных кодов чисел меньше, чем для их обратных кодов, потому что в таком сложении нет переноса единицы из знакового разряда в младший разряд результата.

Умножение и деление

Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число ноль. В процессе выполнения операции в нем поочередно размещаются множимое и результаты промежуточных сложений, а по завершении операции - окончательный результат.

Другой регистр АЛУ, участвующий в выполнении этой операции, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения.

Для иллюстрации умножим 110011 2 на 101101 2 .

Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.

Сложение и вычитание

При сложении и вычитании сначала производится подготовительная операция, называемая выравниванием порядков.

В результате выравнивания порядков одноименные разряды чисел оказываются расположенными в соответствующих разрядах обоих регистров, после чего мантиссы складываются или вычитаются.

В случае необходимости полученный результат нормализуется путем сдвига мантиссы результата влево. После каждого сдвига влево порядок результата уменьшается на единицу.

Пример 1. Сложить двоичные нормализованные числа 0.10111 2 –1 и 0.11011*2 10 . Разность порядков слагаемых здесь равна трем, поэтому перед сложением мантисса первого числа сдвигается на три разряда вправо:

Пример 2. Выполнить вычитание двоичных нормализованных чисел 0.10101*2 10 и 0.11101*2 1 . Разность порядков уменьшаемого и вычитаемого здесь равна единице, поэтому перед вычитанием мантисса второго числа сдвигается на один разряд вправо:

Результат получился не нормализованным, поэтому его мантисса сдвигается влево на два разряда с соответствующим уменьшением порядка на две единицы: 0.1101*2 0 .

Умножение

Пример 3. Выполнить умножение двоичных нормализованных чисел:

(0.11101*2 101)*(0.1001*2 11) = (0.11101*0.1001)* 2 (101+11) = 0.100000101*2 1000 .

Деление

Пример 4. Выполнить деление двоичных нормализованных чисел:

0.1111*2 100: 0.101*2 11 = (0.1111: 0.101) * 2 (100–11) = 1.1*2 1 = 0.11 2 10 .

Использование представления чисел с плавающей точкой существенно усложняет схему арифметико-логического устройства.

Упражнения

4.1. Используя Правило Счета, запишите первые 20 целых чисел в десятичной, двоичной, троичной, пятеричной и восьмеричной системах счисления.
[ Ответ ]

4.2. Какие целые числа следуют за числами:

[ Ответ ]

4.4. Какой цифрой заканчивается четное двоичное число? Какой цифрой заканчивается нечетное двоичное число? Какими цифрами может заканчиваться четное троичное число?
[ Ответ ]

4.5. Какое наибольшее десятичное число можно записать тремя цифрами:

o а) в двоичной системе;

o б) в восьмеричной системе;

o в) в шестнадцатеричной системе?

4.6. В какой системе счисления 21 + 24 = 100?

Решение. Пусть x - искомое основание системы счисления. Тогда 100 x = 1 · x 2 + 0 · x 1 + 0 · x 0 , 21 x = 2 · x 1 + 1 · x 0 , 24 x = 2 · x 1 + 4 · x 0 . Таким образом, x 2 = 2x + 2x + 5 или x 2 - 4x - 5 = 0. Положительным корнем этого квадратного уравнения является x = 5.
Ответ. Числа записаны в пятеричной системе счисления.

4.7. В какой системе счисления справедливо следующее:

o а) 20 + 25 = 100;

o б) 22 + 44 = 110?

4.8. Десятичное число 59 эквивалентно числу 214 в некоторой другой системе счисления. Найдите основание этой системы.
[ Ответ ]

4.9. Переведите числа в десятичную систему, а затем проверьте результаты, выполнив обратные переводы:

[ Ответ ]

4.10. Переведите числа из десятичной системы в двоичную, восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

а) 125 10 ; б) 229 10 ; в) 88 10 ; г) 37,25 10 ; д) 206,125 10 .
[ Ответ ]

4.11. Переведите числа из двоичной системы в восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

а) 1001111110111,0111 2 ; г) 1011110011100,11 2 ;
б) 1110101011,1011101 2 ; д) 10111,1111101111 2 ;
в) 10111001,101100111 2 ; е) 1100010101,11001 2 .

[ Ответ ]

4.12. Переведите в двоичную и восьмеричную системы шестнадцатеричные числа:

а) 2СE 16 ; б) 9F40 16 ; в) ABCDE 16 ; г) 1010,101 16 ; д) 1ABC,9D 16 .
[ Ответ ]

4.13. Выпишите целые числа:

o а) от 101101 2 до 110000 2 в двоичной системе;

o б) от 202 3 до 1000 3 в троичной системе;

o в) от 14 8 до 20 8 в восьмеричной системе;

o г) от 28 16 до 30 16 в шестнадцатеричной системе.

4.14. Для десятичных чисел 47 и 79 выполните цепочку переводов из одной системы счисления в другую:

[ Ответ ]

4.15. Составьте таблицы сложения однозначных чисел в троичной и пятеричной системах счисления.
[ Ответ ]

4.16. Составьте таблицы умножения однозначных чисел в троичной и пятеричной системах счисления.
[ Ответ ]

4.17. Сложите числа, а затем проверьте результаты, выполнив соответствующие десятичные сложения:

[ Ответ ]

4.18. В каких системах счисления выполнены следующие сложения? Найдите основания каждой системы:

[ Ответ ]

4.19. Найдите те подстановки десятичных цифр вместо букв, которые делают правильными выписанные результаты (разные цифры замещаются разными буквами):

[ Ответ ]

4.20. Вычтите:

[ Ответ ]

4.21. Перемножьте числа, а затем проверьте результаты, выполнив соответствующие десятичные умножения:

а) 101101 2 и 101 2 ; д) 37 8 и 4 8 ;
б) 111101 2 и 11,01 2 ; е) 16 8 и 7 8 ;
в) 1011,11 2 и 101,1 2 ; ж) 7,5 8 и 1,6 8 ;
г) 101 2 и 1111,001 2 ; з) 6,25 8 и 7,12 8 .

[ Ответ ]

4.22. Разделите 10010110 2 на 1010 2 и проверьте результат, умножая делитель на частное.
[ Ответ ]

4.23. Разделите 10011010100 2 на 1100 2 и затем выполните соответствующее десятичное и восьмеричное деление.
[ Ответ ]

4.24. Вычислите значения выражений:

o а) 256 8 + 10110,1 2 * (60 8 + 12 10) - 1F 16 ;

o б) 1AD 16 - 100101100 2: 1010 2 + 217 8 ;

o в) 1010 10 + (106 16 - 11011101 2) 12 8 ;

o г) 1011 2 * 1100 2: 14 8 + (100000 2 - 40 8).

4.25. Расположите следующие числа в порядке возрастания:

o а) 74 8 , 110010 2 , 70 10 , 38 16 ;

o б) 6E 16 , 142 8 , 1101001 2 , 100 10 ;

o в) 777 8 , 101111111 2 , 2FF 16 , 500 10 ;

o г) 100 10 , 1100000 2 , 60 16 , 141 8 .

4.26. Запишите уменьшающийся ряд чисел +3, +2, ..., -3 в однобайтовом формате:

o а) в прямом коде;

o б) в обратном коде;

o в) в дополнительном коде.

4.27. Запишите числа в прямом коде (формат 1 байт):

а) 31; б) -63; в) 65; г) -128.
[ Ответ ]

4.28. Запишите числа в обратном и дополнительном кодах (формат 1 байт):

а) -9; б) -15; в) -127; г) -128.
[ Ответ ]

4.29. Найдите десятичные представления чисел, записанных в дополнительном коде:

а) 1 1111000; б) 1 0011011; в) 1 1101001; г) 1 0000000.
[ Ответ ]

4.30. Найдите десятичные представления чисел, записанных в обратном коде:

а) 1 1101000; б) 1 0011111; в) 1 0101011; г) 1 0000000.
[ Ответ ]

4.31. Выполните вычитания чисел путем сложения их обратных (дополнительных) кодов в формате 1 байт. Укажите, в каких случаях имеет место переполнение разрядной сетки:

а) 9 - 2; г) -20 - 10; ж) -120 - 15;
б) 2 - 9; д) 50 - 25; з) -126 - 1;
в) -5 - 7; е) 127 - 1; и) -127 - 1.

[ Ответ ]

Лекция 4. Арифметические основы компьютеров

Представление информации в компьютере .

Для автоматизации работы с данными, которые относятся к разным типам, унифицируют их форму представления. Это можно сделать с помощью кодирования данных на единой основе. В быту используют такие системы кодировки, как азбука Морзе, Брайля, коды морских сигналов. Основное понятие арифметики это число . Число – абстрактное выражение количества. Компьютер обрабатывает информацию, представленную только в числовой форме. Он оперирует с кодами и числами, представленными в некоторой системе счисления.

Система счисления – способ представления чисел(правило записи и получения чисел), с помощью фиксированного набора символов, обозначающих цифры. По способу представления чисел системы счисления разделяются на позиционные и непозиционные.

Непозиционные системы для записи числа используют множество символов. Значение символа не зависит от местоположения его в числе(римская СС ).

Позиционная система счисления – когда от позиции цифры в числе зависит ее вес(555 –единицы, десятки, сотни). Всякая позиционная СС характеризуется основанием , т.е. количеством цифр, используемых для записи числа. За основание СС можно принять любое натуральное число.

10 ая – использует 10 цифр → 0, 1… 9

2 ая – 2 цифры → 0, 1

Люди предпочитают 10 ую (это удобно, видимо потому, что с древних времен считали по пальцам).

В вычислительной технике система кодирования основана на представлении данных в двоичной системе счисления. Компьютеры используют 2 ую систему, т.к. имеется ряд преимуществ:

    Для ее реализации нужны устройства всего с двумя устойчивыми состояниями (есть ток, нет тока). Это надежнее, чем, например, 10 ая ;

    возможно применение аппарата булевой алгебры;

    двоичная арифметика проще десятичной;

    представление информации с помощью 2-х состояний более надежно.

Недостаток : - быстрый рост разрядов.

В компьютере используются также 8 ая и 16 ая системы.

Перевод чисел из 10 ой в 2 ую и наоборот выполняет машина.

При вводе информация кодируется, при выводе декодируется.

Обозначение цифр в 2 ой системе: 0, 1, 10, 11(3), 100(4), 101(5), 110(6), 111(7), 1000(8), 1001(9), 1010(10) и т.д.

Обозначение цифр в 8-ой системе: 0, 1, 2 … 7, 10(8), 11(9), 12(10)……17(15), 20(16), 21(17) и т.д.

Обозначение цифр в 16 ой системе: 0, 1, 2 … 9, A (10), B (11), C (12) ... F (15), 10(16), 11(17) и т. д.

Целое число в позиционной СС может быть представлено в виде:

A q =a n-1 q n-1 +a n-2 q n-2+…+ a 0 q 0 , где

A – само число;

q – основание системы счисления;

a i – цифры, принадлежащие алфавиту данной системы счисления;

n – число целых разрядов числа.

Пусть в десятичной системе задано число 375 10 .

Каждая позиция, занимаемая цифрами, называется разрядом числа . Разряды имеют названия и номера: разряд единиц (0), разряд десятков (1), разряд сотен (2). Названия определяют вес (012) . Число в позиционной системе счисления представляет собой сумму степеней основания, умноженную на соответствующий коэффициент, который должен быть одной из цифр данной системы счисления. Достаточно просуммировать веса единичных разрядов.

А 10 =375

375 10 =5*10 0 +7*10 1 +3*10 2 = 5+70+300=375

Это называется разложением числа по степеням основания.

Номера разрядов совпадают с показателем степени.

101101 2 =1*2 0 +0*2 1 +1*2 2 +1*2 3 +0*2 4 +1*2 5 =1+0+4+8+0+32=45 10

10110 2 =0*2 0 +1*2 1 +1*2 2 +0*2 3 +1*2 4 =0+2+4+0+16=22 10

100001 2 =1*2 0 +0*2 1 +0*2 2 +0*2 3 +0*2 4 +1*2 5 =1+32=33 10

17 8 =1*8 1 +7*8 0 = 8+1=15 10

7764 8 = 7*8 3 +7*8 2 +6*8 1 +4*8 0 = 3584+448+48+4 =4084 10

17 16 = 1*16 1 +7*16 0 = 16+7 = 23 10

3 AF 16 =3*16 2 +10*16 1 +15*16 0 =768+160+15=943 10

1 A 16 = 1*16 1 +10*16 0 = 16+10 = 26 10

От того, какая система счисления будет использована в компьютере, зависят: скорость вычислений, емкость памяти, сложность алгоритмов выполнения арифметических и логических операций

33 10 = ? 2

Алгоритм перевода чисел делением на основание системы счисления : исходное число делим на основание новой СС. Затем получившееся частное опять делим на основание и т. д. , до тех пор, пока частное не станет меньше основания СС. Последнее частное и остатки записываем в порядке, обратном получению.

33 10 = 100001 2

Двоичная система счисления является стандартом при конструировании компьютеров.

Десятичная система счисления используется для организации ввода / вывода информации. Двоичная СС – для организации машинных операций по преобразованию информации. 8-миричная и 16-тиричная системы используются для более короткой и удобной записи, т. к. требует меньше разрядов(для записи программ в машинных кодах).